Hierarchical clustering with discrete latent variable models and the integrated classification likelihood

In this paper, we introduce a two step methodology to extract a hierarchical clustering. This methodology considers the integrated classification likelihood criterion as an objective function, and applies to any discrete latent variable models (DLVM) where this quantity is tractable. The first step of the methodology involves maximizing the criterion with respect to the discrete latent variables state with uninformative priors. To that end we propose a new hybrid algorithm based on greedy local searches as well as a genetic algorithm which allows the joint inference of the number $K$ of clusters and of the clusters themselves. The second step of the methodology is based on a bottom-up greedy procedure to extract a hierarchy of clusters from this natural partition. In a Bayesian context, this is achieved by considering the Dirichlet cluster proportion prior parameter $\alpha$ as a regularisation term controlling the granularity of the clustering. This second step allows the exploration of the clustering at coarser scales and the ordering of the clusters an important output for the visual representations of the clustering results. The clustering results obtained with the proposed approach, on simulated as well as real settings, are compared with existing strategies and are shown to be particularly relevant. This work is implemented in the R package greed.

[1]  Mikkel N. Schmidt,et al.  Infinite-degree-corrected stochastic block model. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[3]  Charles Bouveyron,et al.  Model-Based Clustering and Classification for Data Science: With Applications in R , 2019 .

[4]  Luigi Fortuna,et al.  Evolutionary Optimization Algorithms , 2001 .

[5]  Charles Bouveyron,et al.  The dynamic random subgraph model for the clustering of evolving networks , 2016, Computational Statistics.

[6]  Conrad Sanderson,et al.  Practical Sparse Matrices in C++ with Hybrid Storage and Template-Based Expression Optimisation , 2018 .

[7]  Judith Rousseau,et al.  Overfitting Bayesian Mixture Models with an Unknown Number of Components , 2015, PloS one.

[8]  Robert R. Sokal,et al.  A statistical method for evaluating systematic relationships , 1958 .

[9]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[10]  Conrad Sanderson,et al.  RcppArmadillo: Accelerating R with high-performance C++ linear algebra , 2014, Comput. Stat. Data Anal..

[11]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[12]  Mark E. J. Newman,et al.  Stochastic blockmodels and community structure in networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[14]  Tommi S. Jaakkola,et al.  Fast optimal leaf ordering for hierarchical clustering , 2001, ISMB.

[15]  Gérard Govaert,et al.  Evolutionary Latent Class Clustering of Qualitative Data , 2006 .

[16]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[17]  Neil J. Hurley,et al.  Computational Statistics and Data Analysis , 2022 .

[18]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Alex Alves Freitas,et al.  A Survey of Evolutionary Algorithms for Clustering , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[21]  T. Minka Estimating a Dirichlet distribution , 2012 .

[22]  Yuchung J. Wang,et al.  Stochastic Blockmodels for Directed Graphs , 1987 .

[23]  Christian P. Robert,et al.  Handbook of Mixture Analysis , 2018 .

[24]  Joydeep Ghosh,et al.  A Unified Framework for Model-based Clustering , 2003, J. Mach. Learn. Res..

[25]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Rowena Cole,et al.  Clustering with genetic algorithms , 1998 .

[27]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[28]  James Bailey,et al.  Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance , 2010, J. Mach. Learn. Res..

[29]  G. Govaert,et al.  Latent Block Model for Contingency Table , 2010 .

[30]  Cristopher Moore,et al.  Oriented and degree-generated block models: generating and inferring communities with inhomogeneous degree distributions , 2012, J. Complex Networks.

[31]  Gesine Reinert,et al.  Efficient method for estimating the number of communities in a network , 2017, Physical review. E.

[32]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[33]  Nial Friel,et al.  Choosing the number of clusters in a finite mixture model using an exact integrated completed likelihood criterion , 2014, METRON.

[34]  Michael I. Jordan,et al.  Nonparametric empirical Bayes for the Dirichlet process mixture model , 2006, Stat. Comput..

[35]  J. Portela,et al.  Clustering Discrete Data Through the Multinomial Mixture Model , 2008 .

[36]  P. Latouche,et al.  Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood , 2015 .

[37]  Lada A. Adamic,et al.  The political blogosphere and the 2004 U.S. election: divided they blog , 2005, LinkKDD '05.

[38]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[39]  Sylvia Frühwirth-Schnatter,et al.  Bayesian parsimonious covariance estimation for hierarchical linear mixed models , 2008, Stat. Comput..

[40]  Tai Qin,et al.  Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel , 2013, NIPS.

[41]  St'ephane Robin,et al.  Uncovering latent structure in valued graphs: A variational approach , 2010, 1011.1813.

[42]  P. Latouche,et al.  Model Selection in Overlapping Stochastic Block Models , 2014, 1405.2722.

[43]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[44]  L. Scrucca Genetic Algorithms for Subset Selection in Model-Based Clustering , 2016 .

[45]  Tiago P. Peixoto Hierarchical block structures and high-resolution model selection in large networks , 2013, ArXiv.

[46]  I. C. Gormley,et al.  Mixtures of Experts Models , 2018, 1806.08200.

[47]  Adrian E. Raftery,et al.  Fitting straight lines to point patterns , 1984, Pattern Recognit..

[48]  A. E. Eiben,et al.  Introduction to Evolutionary Computing 2nd Edition , 2020 .

[49]  Agostino Nobile,et al.  Bayesian finite mixtures with an unknown number of components: The allocation sampler , 2007, Stat. Comput..

[50]  Christophe Ambroise,et al.  Variational Bayesian inference and complexity control for stochastic block models , 2009, 0912.2873.

[51]  Shai Bagon,et al.  Large Scale Correlation Clustering Optimization , 2011, ArXiv.

[52]  Catherine Matias,et al.  MODELING HETEROGENEITY IN RANDOM GRAPHS THROUGH LATENT SPACE MODELS: A SELECTIVE REVIEW , 2014 .

[53]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[54]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[55]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[56]  Katherine A. Heller,et al.  Bayesian hierarchical clustering , 2005, ICML.

[57]  G. Celeux,et al.  A Classification EM algorithm for clustering and two stochastic versions , 1992 .

[58]  Paul D. McNicholas,et al.  Using evolutionary algorithms for model-based clustering , 2013, Pattern Recognit. Lett..

[59]  Gérard Govaert,et al.  Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Pablo M. Gleiser,et al.  Community Structure in Jazz , 2003, Adv. Complex Syst..

[61]  Chris Fraley,et al.  Algorithms for Model-Based Gaussian Hierarchical Clustering , 1998, SIAM J. Sci. Comput..

[62]  Fabrice Rossi,et al.  Exact ICL maximization in a non-stationary temporal extension of the stochastic block model for dynamic networks , 2016, Neurocomputing.

[63]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[64]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[65]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[66]  H. Akaike A new look at the statistical model identification , 1974 .

[67]  B. Everitt,et al.  Cluster Analysis: Everitt/Cluster Analysis , 2011 .

[68]  Gilles Celeux,et al.  Combining Mixture Components for Clustering , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[69]  Gesine Reinert,et al.  Estimating the number of communities in a network , 2016, Physical review letters.

[70]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[71]  Nial Friel,et al.  Inferring structure in bipartite networks using the latent blockmodel and exact ICL , 2014, Network Science.

[72]  P. Sneath The application of computers to taxonomy. , 1957, Journal of general microbiology.

[73]  Ji Zhu,et al.  Consistency of community detection in networks under degree-corrected stochastic block models , 2011, 1110.3854.

[74]  Dirk Eddelbuettel,et al.  Extending R with C++: A Brief Introduction to Rcpp , 2018, PeerJ Prepr..

[75]  G. Celeux,et al.  Exact and Monte Carlo calculations of integrated likelihoods for the latent class model , 2010 .

[76]  Franck Picard,et al.  A mixture model for random graphs , 2008, Stat. Comput..