Hierarchical clustering with discrete latent variable models and the integrated classification likelihood
暂无分享,去创建一个
Charles Bouveyron | Etienne Côme | Pierre Latouche | Nicolas Jouvin | C. Bouveyron | E. Côme | Nicolas Jouvin | Pierre Latouche
[1] Mikkel N. Schmidt,et al. Infinite-degree-corrected stochastic block model. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[2] A. E. Eiben,et al. Introduction to Evolutionary Computing , 2003, Natural Computing Series.
[3] Charles Bouveyron,et al. Model-Based Clustering and Classification for Data Science: With Applications in R , 2019 .
[4] Luigi Fortuna,et al. Evolutionary Optimization Algorithms , 2001 .
[5] Charles Bouveyron,et al. The dynamic random subgraph model for the clustering of evolving networks , 2016, Computational Statistics.
[6] Conrad Sanderson,et al. Practical Sparse Matrices in C++ with Hybrid Storage and Template-Based Expression Optimisation , 2018 .
[7] Judith Rousseau,et al. Overfitting Bayesian Mixture Models with an Unknown Number of Components , 2015, PloS one.
[8] Robert R. Sokal,et al. A statistical method for evaluating systematic relationships , 1958 .
[9] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[10] Conrad Sanderson,et al. RcppArmadillo: Accelerating R with high-performance C++ linear algebra , 2014, Comput. Stat. Data Anal..
[11] J. H. Ward. Hierarchical Grouping to Optimize an Objective Function , 1963 .
[12] Mark E. J. Newman,et al. Stochastic blockmodels and community structure in networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[14] Tommi S. Jaakkola,et al. Fast optimal leaf ordering for hierarchical clustering , 2001, ISMB.
[15] Gérard Govaert,et al. Evolutionary Latent Class Clustering of Qualitative Data , 2006 .
[16] T. Snijders,et al. Estimation and Prediction for Stochastic Blockstructures , 2001 .
[17] Neil J. Hurley,et al. Computational Statistics and Data Analysis , 2022 .
[18] King-Sun Fu,et al. IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[19] M E J Newman,et al. Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] Alex Alves Freitas,et al. A Survey of Evolutionary Algorithms for Clustering , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).
[21] T. Minka. Estimating a Dirichlet distribution , 2012 .
[22] Yuchung J. Wang,et al. Stochastic Blockmodels for Directed Graphs , 1987 .
[23] Christian P. Robert,et al. Handbook of Mixture Analysis , 2018 .
[24] Joydeep Ghosh,et al. A Unified Framework for Model-based Clustering , 2003, J. Mach. Learn. Res..
[25] Donald W. Bouldin,et al. A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[26] Rowena Cole,et al. Clustering with genetic algorithms , 1998 .
[27] A. Raftery,et al. Model-based Gaussian and non-Gaussian clustering , 1993 .
[28] James Bailey,et al. Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance , 2010, J. Mach. Learn. Res..
[29] G. Govaert,et al. Latent Block Model for Contingency Table , 2010 .
[30] Cristopher Moore,et al. Oriented and degree-generated block models: generating and inferring communities with inhomogeneous degree distributions , 2012, J. Complex Networks.
[31] Gesine Reinert,et al. Efficient method for estimating the number of communities in a network , 2017, Physical review. E.
[32] David M. Blei,et al. Variational Inference: A Review for Statisticians , 2016, ArXiv.
[33] Nial Friel,et al. Choosing the number of clusters in a finite mixture model using an exact integrated completed likelihood criterion , 2014, METRON.
[34] Michael I. Jordan,et al. Nonparametric empirical Bayes for the Dirichlet process mixture model , 2006, Stat. Comput..
[35] J. Portela,et al. Clustering Discrete Data Through the Multinomial Mixture Model , 2008 .
[36] P. Latouche,et al. Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood , 2015 .
[37] Lada A. Adamic,et al. The political blogosphere and the 2004 U.S. election: divided they blog , 2005, LinkKDD '05.
[38] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[39] Sylvia Frühwirth-Schnatter,et al. Bayesian parsimonious covariance estimation for hierarchical linear mixed models , 2008, Stat. Comput..
[40] Tai Qin,et al. Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel , 2013, NIPS.
[41] St'ephane Robin,et al. Uncovering latent structure in valued graphs: A variational approach , 2010, 1011.1813.
[42] P. Latouche,et al. Model Selection in Overlapping Stochastic Block Models , 2014, 1405.2722.
[43] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[44] L. Scrucca. Genetic Algorithms for Subset Selection in Model-Based Clustering , 2016 .
[45] Tiago P. Peixoto. Hierarchical block structures and high-resolution model selection in large networks , 2013, ArXiv.
[46] I. C. Gormley,et al. Mixtures of Experts Models , 2018, 1806.08200.
[47] Adrian E. Raftery,et al. Fitting straight lines to point patterns , 1984, Pattern Recognit..
[48] A. E. Eiben,et al. Introduction to Evolutionary Computing 2nd Edition , 2020 .
[49] Agostino Nobile,et al. Bayesian finite mixtures with an unknown number of components: The allocation sampler , 2007, Stat. Comput..
[50] Christophe Ambroise,et al. Variational Bayesian inference and complexity control for stochastic block models , 2009, 0912.2873.
[51] Shai Bagon,et al. Large Scale Correlation Clustering Optimization , 2011, ArXiv.
[52] Catherine Matias,et al. MODELING HETEROGENEITY IN RANDOM GRAPHS THROUGH LATENT SPACE MODELS: A SELECTIVE REVIEW , 2014 .
[53] A. Brix. Bayesian Data Analysis, 2nd edn , 2005 .
[54] Adrian E. Raftery,et al. Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .
[55] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[56] Katherine A. Heller,et al. Bayesian hierarchical clustering , 2005, ICML.
[57] G. Celeux,et al. A Classification EM algorithm for clustering and two stochastic versions , 1992 .
[58] Paul D. McNicholas,et al. Using evolutionary algorithms for model-based clustering , 2013, Pattern Recognit. Lett..
[59] Gérard Govaert,et al. Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[60] Pablo M. Gleiser,et al. Community Structure in Jazz , 2003, Adv. Complex Syst..
[61] Chris Fraley,et al. Algorithms for Model-Based Gaussian Hierarchical Clustering , 1998, SIAM J. Sci. Comput..
[62] Fabrice Rossi,et al. Exact ICL maximization in a non-stationary temporal extension of the stochastic block model for dynamic networks , 2016, Neurocomputing.
[63] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[64] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[65] Olga Veksler,et al. Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[66] H. Akaike. A new look at the statistical model identification , 1974 .
[67] B. Everitt,et al. Cluster Analysis: Everitt/Cluster Analysis , 2011 .
[68] Gilles Celeux,et al. Combining Mixture Components for Clustering , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[69] Gesine Reinert,et al. Estimating the number of communities in a network , 2016, Physical review letters.
[70] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[71] Nial Friel,et al. Inferring structure in bipartite networks using the latent blockmodel and exact ICL , 2014, Network Science.
[72] P. Sneath. The application of computers to taxonomy. , 1957, Journal of general microbiology.
[73] Ji Zhu,et al. Consistency of community detection in networks under degree-corrected stochastic block models , 2011, 1110.3854.
[74] Dirk Eddelbuettel,et al. Extending R with C++: A Brief Introduction to Rcpp , 2018, PeerJ Prepr..
[75] G. Celeux,et al. Exact and Monte Carlo calculations of integrated likelihoods for the latent class model , 2010 .
[76] Franck Picard,et al. A mixture model for random graphs , 2008, Stat. Comput..