Convex quadratic relaxations of nonconvex quadratically constrained quadratic programs

Nonconvex quadratic constraints can be linearized to obtain relaxations in a well-understood manner. We propose to tighten the relaxation by using second-order cone constraints, resulting in a convex quadratic relaxation. Our quadratic approximation to the bilinear term is compared to the linear McCormick bounds. The second-order cone constraints are based on linear combinations of pairs of variables. With good bounds on these linear combinations, the resulting constraints strengthen the McCormick bounds. Computational results are given, which indicate that the convex quadratic relaxation can dramatically improve the solution times for some problems.

[1]  Jing Hu,et al.  An LPCC approach to nonconvex quadratic programs , 2012, Math. Program..

[2]  Samuel Burer,et al.  A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations , 2008, Math. Program..

[3]  Grazyna Nowak Approximate Reasoning of the Chemical Reactivity for Computer Simulation of Chemical Reactions , 1997, Comput. Chem..

[4]  Hanif D. Sherali,et al.  A new reformulation-linearization technique for bilinear programming problems , 1992, J. Glob. Optim..

[5]  P. Hansen,et al.  Essays and surveys in global optimization , 2005 .

[6]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[7]  James E. Falk,et al.  Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..

[8]  Christodoulos A. Floudas,et al.  Global optimization of MINLP problems in Process Synthesis and Design , 1997 .

[9]  Samuel Burer,et al.  Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound , 2009, Comput. Optim. Appl..

[10]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[11]  Jean-Philippe P. Richard,et al.  Lifting inequalities: a framework for generating strong cuts for nonlinear programs , 2010, Math. Program..

[12]  George L. Nemhauser,et al.  A branch-and-cut algorithm for nonconvex quadratic programs with box constraints , 2005, Math. Program..

[13]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[14]  John E. Mitchell,et al.  Obtaining Tighter Relaxations of Mathematical Programs with Complementarity Constraints , 2012 .

[15]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[16]  Todd Munson,et al.  Optimization on the NEOS Server , 2002 .

[17]  Egon Balas,et al.  Intersection Cuts - A New Type of Cutting Planes for Integer Programming , 1971, Oper. Res..

[18]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[19]  Patrice Marcotte,et al.  Bilevel Programming , 2009, Encyclopedia of Optimization.

[20]  J. Júdice,et al.  The Linear-Quadratic Bilevel Programming Problem , 1994 .

[21]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[22]  Masakazu Kojima,et al.  Cones of Matrices and Successive Convex Relaxations of Nonconvex Sets , 1999, SIAM J. Optim..

[23]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[24]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[25]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[26]  George L. Nemhauser,et al.  A polyhedral study of nonconvex quadratic programs with box constraints , 2005, Math. Program..

[27]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[28]  Jing Hu,et al.  On linear programs with linear complementarity constraints , 2011, Journal of Global Optimization.

[29]  Jing Hu,et al.  Classification model selection via bilevel programming , 2008, Optim. Methods Softw..

[30]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[31]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[32]  Andreas Ritter,et al.  Handbook Of Test Problems In Local And Global Optimization , 2016 .

[33]  Samuel Burer,et al.  On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..

[34]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[35]  Nikolaos V. Sahinidis,et al.  Semidefinite relaxations for quadratically constrained quadratic programming: A review and comparisons , 2011, Math. Program..

[36]  Nikolaos V. Sahinidis,et al.  Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs , 2009, Optim. Methods Softw..

[37]  Jeff T. Linderoth A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs , 2005, Math. Program..

[38]  Pietro Belotti,et al.  Valid Inequalities and Convex Hulls for Multilinear Functions , 2010, Electron. Notes Discret. Math..