J-2X Turbopump Cavitation Diagnostics

The J-2X is the upper stage engine currently being designed by Pratt & Whitney Rocketdyne (PWR) for the Ares I Crew Launch Vehicle (CLV). Propellant supply requirements for the J-2X are defined by the Ares Upper Stage to J-2X Interface Control Document (ICD). Supply conditions outside ICD defined start or run boxes can induce turbopump cavitation leading to interruption of J-2X propellant flow during hot fire operation. In severe cases, cavitation can lead to uncontained engine failure with the potential to cause a vehicle catastrophic event. Turbopump and engine system performance models supported by system design information and test data are required to predict existence, severity, and consequences of a cavitation event. A cavitation model for each of the J-2X fuel and oxidizer turbopumps was developed using data from pump water flow test facilities at Pratt & Whitney Rocketdyne (PWR) and Marshall Space Flight Center (MSFC) together with data from Powerpack 1A testing at Stennis Space Center (SSC) and from heritage systems. These component models were implemented within the PWR J-2X Real Time Model (RTM) to provide a foundation for predicting system level effects following turbopump cavitation. The RTM serves as a general failure simulation platform supporting estimation of J-2X redline system effectiveness. A study to compare cavitation induced conditions with component level structural limit thresholds throughout the engine was performed using the RTM. Results provided insight into system level turbopump cavitation effects and redline system effectiveness in preventing structural limit violations. A need to better understand structural limits and redline system failure mitigation potential in the event of fuel side cavitation was indicated. This paper examines study results, efforts to mature J-2X turbopump cavitation models and structural limits, and issues with engine redline detection of cavitation and the use of vehicle-side abort triggers to augment the engine redline system.