Nonlinear problem with subcritical exponent in Sobolev space
暂无分享,去创建一个
[1] M. Ben Ayed,et al. Existence of conformal metrics with prescribed scalar curvature on the four dimensional half sphere , 2012 .
[2] P. Hästö,et al. Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .
[3] A. Malchiodi,et al. Prescribing scalar and boundary mean curvature on the three dimensional half sphere , 2003 .
[4] Congming Li,et al. Prescribing scalar curvature on Sn , 2001 .
[5] G. Bianchi,et al. Yamabe equations on half-spaces , 1999 .
[6] A. Ambrosetti,et al. Perturbation of Δu+u(N+2)/(N−2)=0, the Scalar Curvature Problem in RN, and Related Topics , 1999 .
[7] O. Rey. The topological impact of critical points at infinity in a variational problem with lack of compactness: the dimension $3$ , 1999, Advances in Differential Equations.
[8] Yanyan Li. Prescribing Scalar Curvature on Sn and Related Problems, Part I , 1995 .
[9] JosEi F. Escobar,et al. Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary , 1992 .
[10] Paul C. Yang,et al. A perturbation result in prescribing scalar curvature on $S^n$ , 1991 .
[11] R. Schoen,et al. Conformal metrics with prescribed scalar curvature , 1986 .
[12] P. Cherrier. Problèmes de Neumann non linéaires sur les variétés riemanniennes , 1984 .
[13] K. Bouh. Blowing up of sign-changing solutions to a subcritical problem , 2015 .
[14] Yanyan Li,et al. The existence of conformal metrics with constant scalar curvature and constant boundary mean curvature , 2000 .
[15] A. Bahri. An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension , 1996 .
[16] Yanyan Li,et al. On a variational problem with lack of compactness: the topological effect of the critical points at infinity , 1995 .
[17] E. Hebey. La méthode d'isométries-concentration dans le cas d'un problème non linéaire sur les variétés compactes à bord avec exposant critique de Sobolev , 1992 .
[18] J. Coron,et al. The scalar-curvature problem on the standard three-dimensional sphere , 1991 .