The Calderón reproducing formula, windowed X-ray transforms, and radon transforms in LP-spaces

The generalized Calderón reproducing formula involving “wavelet measure” is established for functions f ∈ Lp(ℝn). The special choice of the wavelet measure in the reproducing formula gives rise to the continuous decomposition of f into wavelets, and enables one to obtain inversion formulae for generalized windowed X-ray transforms, the Radon transform, and k-plane transforms. The admissibility conditions for the wavelet measure μ are presented in terms of μ itself and in terms of the Fourier transform of μ.

[1]  Fulton Gonzalez On the range of the Radon $d$-plane transform and its dual , 1991 .

[2]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[3]  B. Rubin On Calderón’s Reproducing Formula , 1998 .

[4]  B. Rubin Inversion of Radon transforms using wavelet transforms generated by wavelet measures , 1999 .

[5]  Carlos A. Berenstein,et al.  Local Inversion of the Radon Transform in Even Dimensions Using Wavelets , 1993 .

[6]  Robert S. Strichartz,et al.  $L^p$ estimates for Radon transforms in Euclidean and non-Euclidean spaces , 1981 .

[7]  G. Weiss,et al.  Extensions of Hardy spaces and their use in analysis , 1977 .

[8]  On the Reproducing Formula of Calderon , 1995 .

[9]  Matthias Holschneider,et al.  Inverse Radon transforms through inverse wavelet transforms , 1991 .

[10]  Donald C. Solmon,et al.  A note on k-plane integral transforms , 1979 .

[11]  Boris Rubin,et al.  Fractional Integrals and Potentials , 1996 .

[12]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[13]  Kennan T. Smith,et al.  Lower dimensional integrability of L2 functions , 1975 .

[14]  David F. Walnut,et al.  Applications of Gabor and wavelet expansions to the Radon transform , 1992 .

[15]  Application of Carleson's Theorem to wavelet inversion , 1994 .

[16]  G. Weiss,et al.  Littlewood-Paley Theory and the Study of Function Spaces , 1991 .

[17]  R. Streater,et al.  Windowed radon transforms, analytic signals, and the wave equation , 1993, math-ph/0108010.

[18]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[19]  B. Rubin Inversion ofk-Plane Transforms via Continuous Wavelet Transforms , 1998 .

[20]  S. Helgason The Radon Transform , 1980 .

[21]  F. Keinert,et al.  Inversion of k-Plane Transforms and Applications in Computer Tomog , 1989, SIAM Rev..