On finite edge-primitive and edge-quasiprimitive graphs

Many famous graphs are edge-primitive, for example, the Heawood graph, the Tutte-Coxeter graph and the Higman-Sims graph. In this paper we systematically analyse edge-primitive and edge-quasiprimitive graphs via the O'Nan-Scott Theorem to determine the possible edge and vertex actions of such graphs. Many interesting examples are given and we also determine all G-edge-primitive graphs for G an almost simple group with socle PSL(2,q).

[1]  L. Dickson Linear Groups, with an Exposition of the Galois Field Theory , 1958 .

[2]  Barbara Baumeister,et al.  Factorizations of Primitive Permutation Groups , 1997 .

[3]  Frank Harary,et al.  Isomorphic factorizations X: Unsolved problems , 1985, J. Graph Theory.

[4]  L. Kovács Primitive Subgroups of Wreath Products in Product Action , 1989 .

[5]  Cheryl E Praeger Surveys in Combinatorics, 1997: Finite Quasiprimitive Graphs , 1997 .

[6]  Cheryl E. Praeger,et al.  Homogeneous factorisations of complete multipartite graphs , 2007, Discret. Math..

[7]  Cheryl E. Praeger,et al.  Homogeneous factorisations of graphs and digraphs , 2006, Eur. J. Comb..

[8]  H. Weyl Permutation Groups , 2022 .

[9]  P. B. Kleidman The maximal subgroups of the finite 8-dimensional orthogonal groups PΩ8+(q) and of their automorphism groups , 1987 .

[10]  C. Praeger,et al.  On Partitioning the Orbitals of a Transitive Permutation Group , 2002 .

[11]  Geoffrey Mason,et al.  The Santa Cruz Conference on Finite Groups , 1981 .

[12]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[13]  Richard Weiss,et al.  Kantenprimitive Graphen vom Grad drei , 1973 .

[14]  Michael Giudici Maximal subgroups of almost simple groups with socle $\PSL(2,q)$ , 2007 .

[15]  Cheryl E. Praeger,et al.  Symmetrical covers, decompositons and factorisations of graphs , 2008 .

[16]  R. W. Robinson,et al.  Isomorphic factorisations. I. Complete graphs , 1978 .

[17]  Cheryl E. Praeger,et al.  A classification of the maximal subgroups of the finite alternating and symmetric groups , 1987 .

[18]  Thomas Q. Sibley On classifying finite edge colored graphs with two transitive automorphism groups , 2004, J. Comb. Theory, Ser. B.