Random geometric graphs.

We analyze graphs in which each vertex is assigned random coordinates in a geometric space of arbitrary dimensionality and only edges between adjacent points are present. The critical connectivity is found numerically by examining the size of the largest cluster. We derive an analytical expression for the cluster coefficient, which shows that the graphs are distinctly different from standard random graphs, even for infinite dimensionality. Insights relevant for graph bipartitioning are included.

[1]  E. T. Gawlinski,et al.  Continuum percolation in two dimensions: Monte Carlo tests of scaling and universality for non-interacting discs , 1981 .

[2]  B. Bollobás The evolution of random graphs , 1984 .

[3]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[4]  Béla Bollobás,et al.  Random Graphs , 1985 .

[5]  Balberg,et al.  Universal percolation-threshold limits in the continuum. , 1985, Physical review. B, Condensed matter.

[6]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[7]  Isaac Balberg,et al.  Recent developments in continuum percolation , 1987 .

[8]  D. Sherrington,et al.  Graph bipartitioning and spin glasses on a random network of fixed finite valence , 1987 .

[9]  Thorpe,et al.  Percolation properties of random ellipses. , 1988, Physical review. A, General physics.

[10]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[11]  Alon,et al.  Systematic derivation of percolation thresholds in continuum systems. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[12]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[13]  Alon,et al.  New, heuristic, percolation criterion for continuum systems. , 1991, Physical review letters.

[14]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[15]  John Archibald Wheeler,et al.  At Home in the Universe , 1994 .

[16]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[17]  David Eppstein,et al.  Algorithms for Proximity Problems in Higher Dimensions , 1995, Comput. Geom..

[18]  Salvatore Torquato,et al.  LETTER TO THE EDITOR: Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model , 1997 .

[19]  Bruce A. Reed,et al.  The Size of the Giant Component of a Random Graph with a Given Degree Sequence , 1998, Combinatorics, Probability and Computing.

[20]  Bernd Freisleben,et al.  Memetic Algorithms and the Fitness Landscape of the Graph Bi-Partitioning Problem , 1998, PPSN.

[21]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[22]  Stefan Boettcher,et al.  Extremal Optimization: Methods derived from Co-Evolution , 1999, GECCO.

[23]  M. Newman,et al.  Scaling and percolation in the small-world network model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Amos Maritan,et al.  Size and form in efficient transportation networks , 1999, Nature.

[25]  Lada A. Adamic,et al.  Internet: Growth dynamics of the World-Wide Web , 1999, Nature.

[26]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[27]  S. Boettcher Extremal Optimization of Graph Partitioning at the Percolation Threshold , 1999, cond-mat/9901353.

[28]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. N. Dorogovtsev,et al.  Evolution of networks with aging of sites , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Albert,et al.  Topology of evolving networks: local events and universality , 2000, Physical review letters.

[31]  A. Percus,et al.  Nature's Way of Optimizing , 1999, Artif. Intell..

[32]  Mark Newman,et al.  Models of the Small World , 2000 .

[33]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[34]  S. Redner,et al.  Connectivity of growing random networks. , 2000, Physical review letters.

[35]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[36]  J. Quintanilla,et al.  Efficient measurement of the percolation threshold for fully penetrable discs , 2000 .

[37]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Stefan Boettcher,et al.  Extremal Optimization for Graph Partitioning , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  M. Newman Clustering and preferential attachment in growing networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[41]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[42]  S. Strogatz Exploring complex networks , 2001, Nature.

[43]  Random walks on fractals and stretched exponential relaxation. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  J. Hopcroft,et al.  Are randomly grown graphs really random? , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Gesine Reinert,et al.  Small worlds , 2001, Random Struct. Algorithms.

[46]  Alessandro Vespignani,et al.  EPIDEMIC SPREADING IN SCALEFREE NETWORKS , 2001 .

[47]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[48]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .