Polynomial-time algorithms for probabilistic solutions of parameter-dependent linear matrix inequalities

A randomized approach is considered for a feasibility problem on a parameter-dependent linear matrix inequality (LMI). In particular, a gradient-based and an ellipsoid-based randomized algorithms are improved by introduction of a stopping rule. The improved algorithms stop after a bounded number of iterations and this bound is of polynomial order in the problem size. When the algorithms stop, either of the following two events occurs: (i) they find with high confidence a probabilistic solution, which satisfies the given LMI for most of the parameter values; (ii) they detect in an approximate sense the non-existence of a deterministic solution, which satisfies the given LMI for all the parameter values. These results are important because the original randomized algorithms have issues to be settled on detection of convergence, on the speed of convergence, and on the assumption of feasibility. The improved algorithms can be adapted for an optimization problem constrained by a parameter-dependent LMI. A numerical example shows the efficacy of the proposed algorithms.

[1]  K. Uchida,et al.  L/sup 2/ gain and H/sup /spl infin// control of linear systems with scheduling parameter , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[2]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[3]  Giuseppe Carlo Calafiore,et al.  Randomized algorithms in robust control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[4]  R. Tempo,et al.  Gradient algorithms for finding common Lyapunov functions , 2002, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[5]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .

[6]  Yasuaki Oishi,et al.  Probabilistic design of a robust state-feedback controller based on parameter-dependent Lyapunov functions , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[7]  C. Scherer Higher-order relaxations for robust LMI problems with verifications for exactness , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[8]  Etsujiro Shimemura,et al.  H∞ Control of Linear Systems with Scheduling Parameter , 1994 .

[9]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[10]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[11]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[12]  Yasuaki Oishi,et al.  Probabilistic Design of a Robust Controller Using a Parameter-Dependent Lyapunov Function , 2006 .

[13]  Y. Oishi Implementation of a randomized algorithm for solving parameter-dependent linear matrix inequalities , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[14]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[15]  Boris Polyak Random Algorithms for Solving Convex Inequalities , 2001 .

[16]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[17]  S. Bittanti,et al.  Affine Parameter-Dependent Lyapunov Functions and Real Parametric Uncertainty , 1996 .

[18]  Hidenori Kimura,et al.  Computational complexity of randomized algorithms for solving parameter-dependent linear matrix inequalities , 2003, Autom..

[19]  R. Tempo,et al.  Probabilistic robustness analysis: explicit bounds for the minimum number of samples , 1997 .

[20]  Daniel Liberzon,et al.  Common Lyapunov functions and gradient algorithms , 2004, IEEE Transactions on Automatic Control.

[21]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[22]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[23]  Michel Verhaegen,et al.  An ellipsoid algorithm for probabilistic robust controller design , 2003, Syst. Control. Lett..

[24]  Michael J. Todd,et al.  Feature Article - The Ellipsoid Method: A Survey , 1981, Oper. Res..

[25]  Roberto Tempo,et al.  Probabilistic design of LPV control systems , 2003, Autom..

[26]  Pramod P. Khargonekar,et al.  Randomized algorithms for robust control analysis and synthesis have polynomial complexity , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[27]  A. Ohara,et al.  On solvability and numerical solutions of parameter-dependent differential matrix inequality , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[28]  Michael J. Todd,et al.  The Ellipsoid Method: A Survey , 1980 .

[29]  Kiyoshi Takagi,et al.  Gain-Scheduled Control of a Tower Crane Considering Varying Load-Rope Length , 1999 .

[30]  Kemin Zhou,et al.  A probabilistic approach to robust control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[31]  Roberto Tempo,et al.  Probabilistic robust design with linear quadratic regulators , 2001, Syst. Control. Lett..

[32]  H. Kimura,et al.  Randomized algorithms to solve parameter-dependent linear matrix inequalities and their computational complexity , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[33]  Giuseppe Carlo Calafiore,et al.  Stochastic algorithms for exact and approximate feasibility of robust LMIs , 2001, IEEE Trans. Autom. Control..

[34]  A. Nemirovskii Several NP-hard problems arising in robust stability analysis , 1993 .