Quantum information processing by NMR: preparation of pseudopure states and implementation of unitary operations in a single-qutrit system
暂无分享,去创建一个
[1] W. Munro,et al. Bounds on entanglement in qudit subsystems , 2002, quant-ph/0203037.
[2] J. A. Jones. NMR quantum computation , 2000 .
[3] M. Żukowski,et al. Security of Quantum Key Distribution with entangled Qutrits. , 2002, quant-ph/0207057.
[4] N. B. Freeman. An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer , 1998, quant-ph/9808039.
[5] Carlton M. Caves,et al. Qutrit Entanglement , 1999 .
[6] Matthias Christandl,et al. Quantum cryptography based on qutrit Bell inequalities , 2003 .
[7] J. C. Retamal,et al. Qutrit quantum computer with trapped ions , 2003 .
[8] Lov K. Grover. Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.
[9] M Fitzi,et al. Quantum solution to the Byzantine agreement problem. , 2001, Physical review letters.
[10] N. Gershenfeld,et al. Bulk Spin-Resonance Quantum Computation , 1997, Science.
[11] G. Long,et al. General scheme for superdense coding between multiparties , 2001, quant-ph/0110112.
[12] K. B. Whaley,et al. Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.
[13] R. Feynman. Simulating physics with computers , 1999 .
[14] K. V. Ramanathan,et al. Quantum-information processing by nuclear magnetic resonance: Experimental implementation of half-adder and subtractor operations using an oriented spin-7/2 system , 2002 .
[15] D. Kaszlikowski,et al. Three-qutrit correlations violate local realism more strongly than those of three qubits , 2002 .
[16] B. Fung,et al. Nuclear magnetic resonance quantum logic gates using quadrupolar nuclei , 2000 .
[17] I. Chuang,et al. UvA-DARE ( Digital Academic Repository ) Simulating quantum operations with mixed environments , 1999 .
[18] D. Deutsch,et al. Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[19] Efficient quantum-state tomography for quantum-information processing using a two-dimensional Fourier-transform technique , 2002, quant-ph/0212116.
[20] W. Munro,et al. Qudit quantum-state tomography , 2002 .
[21] Arvind,et al. Implementing quantum-logic operations, pseudopure states, and the Deutsch-Jozsa algorithm using noncommuting selective pulses in NMR , 1999, quant-ph/9906027.
[22] B. M. Fung,et al. NMR simulation of an eight-state quantum system , 2001 .
[23] G. Bowen. Classical information capacity of superdense coding , 2001 .
[24] A. Saupe,et al. Observation of a Biaxial Nematic Phase in Potassium Laurate-1-Decanol-Water Mixtures , 1980 .
[25] D. Abbott,et al. Quantum version of the Monty Hall problem , 2001, quant-ph/0109035.
[26] Ranabir Das,et al. Use of quadrupolar nuclei for quantum-information processing by nuclear magnetic resonance: Implementation of a quantum algorithm , 2003 .
[27] Timothy F. Havel,et al. Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.
[28] Rafael Brüschweiler,et al. One- and two-dimensional ensemble quantum computing in spin Liouville space , 1998 .
[29] Seth Lloyd,et al. Universal Quantum Simulators , 1996, Science.
[30] Hong-xiang Sun,et al. Method of multifrequency excitation for creating pseudopure states for NMR quantum computing , 2001 .
[31] T. S. Mahesh,et al. Toward quantum information processing by nuclear magnetic resonance: pseudopure states and logical operations using selective pulses on an oriented spin 3/2 nucleus , 2001 .
[32] K. B. Whaley,et al. Exact gate sequences for universal quantum computation using the XY interaction alone , 2001, quant-ph/0112014.
[33] Jason Twamley,et al. Entanglement distribution between N distant users via a center , 2001 .