A Chebyshev collocation method for a class of Fredholm integral equations with highly oscillatory kernels

Based on the Filon-Clenshaw-Curtis method for highly oscillatory integrals, and together with the Sommariva's result (Sommariva, 2013) for Clenshaw-Curtis quadrature rule, we present a Chebyshev collocation method for a class of Fredholm integral equations with highly oscillatory kernels, whose unknown function is assumed to be less oscillatory than the kernel. In the proposed method, the Filon-Clenshaw-Curtis method is used to compute the involved oscillatory integrals, which makes the proposed method very precise. By solving only a small system of linear equations, we can obtain a very satisfactory numerical solution. The performance of the presented method is illustrated by several numerical examples. Compared with the method proposed by Li et?al. (2012), this method enjoys a lower computational complexity. Furthermore, numerical examples show that the presented method has a competitive advantage on the accuracy compared with the method in Li et?al. (2012).

[1]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  R. Chin,et al.  On the matched asymptotic solution of the Troesch problem , 1981 .

[4]  David Levin,et al.  Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .

[5]  Hongchao Kang,et al.  Fast Computation of Singular Oscillatory Fourier Transforms , 2014 .

[6]  Yudell L. Luke,et al.  On the computation of oscillatory integrals , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Shuhuang Xiang,et al.  Clenshaw–Curtis–Filon-type methods for highly oscillatory Bessel transforms and applications , 2011 .

[8]  Shuhuang Xiang,et al.  An improved algorithm for the evaluation of Cauchy principal value integrals of oscillatory functions and its application , 2015, J. Comput. Appl. Math..

[9]  Shuhuang Xiang,et al.  Numerical solutions to Volterra integral equations of the second kind with oscillatory trigonometric kernels , 2013, Appl. Math. Comput..

[10]  Congpei An,et al.  On the evaluation of infinite integrals involving Bessel functions , 2014, Appl. Math. Comput..

[11]  Ruyun Chen,et al.  On the evaluation of Bessel transformations with the oscillators via asymptotic series of Whittaker functions , 2013, J. Comput. Appl. Math..

[12]  Shuhuang Xiang,et al.  Numerical evaluation of a class of highly oscillatory integrals involving Airy functions , 2014, Appl. Math. Comput..

[13]  Arieh Iserles,et al.  Quadrature methods for multivariate highly oscillatory integrals using derivatives , 2006, Math. Comput..

[14]  Shuhuang Xiang,et al.  On the calculation of highly oscillatory integrals with an algebraic singularity , 2010, Appl. Math. Comput..

[15]  E. A. Flinn A Modification of Filon's Method of Numerical Integration , 1960, JACM.

[16]  Congpei An,et al.  On evaluation of Bessel transforms with oscillatory and algebraic singular integrands , 2014, J. Comput. Appl. Math..

[17]  Arieh Iserles,et al.  The spectral problem for a class of highly oscillatory Fredholm integral operators , 2010 .

[18]  Gradimir V. Milovanović,et al.  Numerical Calculation of Integrals Involving Oscillatory and Singular Kernels and Some Applications of Quadratures , 1998 .

[19]  David Levin,et al.  Analysis of a collocation method for integrating rapidly oscillatory functions , 1997 .

[20]  Alvise Sommariva,et al.  Fast construction of Fejér and Clenshaw-Curtis rules for general weight functions , 2013, Comput. Math. Appl..

[21]  Shuhuang Xiang,et al.  On the convergence rates of Filon methods for the solution of a Volterra integral equation with a highly oscillatory Bessel kernel , 2013, Appl. Math. Lett..

[22]  A. Iserles,et al.  Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Shuhuang Xiang,et al.  On the implementation of discontinuous Galerkin methods for Volterra integral equations with highly oscillatory Bessel kernels , 2013, Appl. Math. Comput..

[24]  Víctor Domínguez,et al.  Filon-Clenshaw-Curtis rules for a class of highly-oscillatory integrals with logarithmic singularities , 2013, J. Comput. Appl. Math..

[25]  Shuhuang Xiang,et al.  Laplace transforms for approximation of highly oscillatory Volterra integral equations of the first kind , 2014, Appl. Math. Comput..

[26]  R. Piessens,et al.  Modified clenshaw-curtis method for the computation of Bessel function integrals , 1983 .

[27]  Daan Huybrechs,et al.  Complex Gaussian quadrature for oscillatory integral transforms , 2013 .

[28]  Daan Huybrechs,et al.  On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..

[29]  Ivan G. Graham,et al.  Stability and error estimates for Filon–Clenshaw–Curtis rules for highly oscillatory integrals , 2011 .

[30]  Tao Wang,et al.  A rapid solution of a kind of 1D Fredholm oscillatory integral equation , 2012, J. Comput. Appl. Math..

[31]  Chen Ling,et al.  Computation of integrals with oscillatory singular factors of algebraic and logarithmic type , 2015, J. Comput. Appl. Math..

[32]  Robert Piessens,et al.  On the computation of Fourier transforms of singular functions , 1992 .

[33]  F. Ursell,et al.  Integral Equations with a Rapidly Oscillating Kernel , 1969 .

[34]  J. Oliver,et al.  The numerical solution of linear recurrence relations , 1968 .

[35]  L. Trefethen Approximation Theory and Approximation Practice (Other Titles in Applied Mathematics) , 2012 .

[36]  Shuhuang Xiang,et al.  Uniform approximations to Cauchy principal value integrals of oscillatory functions , 2009, Appl. Math. Comput..

[37]  Tao Wang,et al.  A universal solution to one-dimensional oscillatory integrals , 2008, Science in China Series F: Information Sciences.

[38]  L. Filon III.—On a Quadrature Formula for Trigonometric Integrals. , 1930 .

[39]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[40]  Shuhuang Xiang,et al.  Efficient quadrature of highly oscillatory integrals with algebraic singularities , 2013, J. Comput. Appl. Math..

[41]  Sheehan Olver,et al.  Moment-free numerical integration of highly oscillatory functions , 2006 .

[42]  Shuhuang Xiang,et al.  Asymptotic expansion and Filon-type methods for a Volterra integral equation with a highly oscillatory kernel , 2011 .

[43]  Daan Huybrechs,et al.  Complex Gaussian quadrature of oscillatory integrals , 2009, Numerische Mathematik.

[44]  Shuhuang Xiang,et al.  Efficient methods for Volterra integral equations with highly oscillatory Bessel kernels , 2013 .

[45]  A. Erdélyi,et al.  Asymptotic Representations of Fourier Integrals and the Method of Stationary Phase , 1955 .

[46]  David Levin,et al.  Fast integration of rapidly oscillatory functions , 1996 .