Solution of population balance equations by logarithmic shape preserving interpolation on finite elements

Abstract A new numerical approach for solving population balance equations (PBE) is proposed and validated. The method employs a combination of basis functions, defined on finite elements, to approximate the sought distribution function. Similarly to other methods of the same family, the PBE are solved only in a finite number of values of the internal coordinate (grid points). The peculiarity of the method is the use of a logarithmic, shape-preserving interpolation (LSPI) procedure to estimate the values of the distribution in between grid points. The main advantages of the LSPI method compared to other approaches of the same category are: (i) the stability of the numerical approach (i.e., the absence of oscillations in the distribution function occurring when using “standard” cubic splines and a low number of elements), and (ii) the conceptual and implementation simplicity, as no mathematical manipulation of the PBE is required.

[1]  Igor L. Medintz,et al.  Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. , 2017, Chemical reviews.

[2]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .

[3]  C. Kiparissides,et al.  Population Balance Modeling of Particulate Polymerization Processes , 2004 .

[4]  A Novel Approach to Population Balance Modeling of Reactive Polymer Modification Leading to Branching , 2013 .

[5]  Neil A. Dotson,et al.  Polymerization Process Modeling , 1995 .

[6]  Michael Wulkow,et al.  Computer Aided Modeling of Polymer Reaction Engineering—The Status of Predici, I‐Simulation , 2008 .

[7]  J. Seinfeld,et al.  Numerical solution of the dynamic equation for particulate systems , 1978 .

[8]  M. Morbidelli,et al.  Evaluation of the Chain Length Distribution in Free-Radical Polymerization, 2. Emulsion Polymerization , 2002 .

[9]  Mariano Asteasuain,et al.  Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains , 2016, Comput. Chem. Eng..

[10]  Steven C. Chapra,et al.  Numerical Methods for Engineers , 1986 .

[11]  Hugo A. Jakobsen,et al.  Evaluation of Weighted Residual Methods for the Solution of a Population Balance Model Describing Bubbly Flows: The Least-Squares, Galerkin, Tau, and Orthogonal Collocation Methods , 2013 .

[12]  Daniele Marchisio,et al.  Computational Models for Polydisperse Particulate and Multiphase Systems , 2013 .

[13]  M. Morbidelli,et al.  Synthesis and Ring-Opening Polymerization of Cyclic Butylene 2,5-Furandicarboxylate , 2015 .

[14]  C. J. Wright,et al.  Spline-collocation with adaptive mesh grading for solving the stochastic collection equation , 1988 .

[15]  M. Mazzotti,et al.  A Population Balance Model for Chiral Resolution via Viedma Ripening , 2011 .

[16]  Daniele Marchisio,et al.  Solution of population balance equations using the direct quadrature method of moments , 2005 .

[17]  M. Mazzotti,et al.  Precipitation of αL-glutamic acid: determination of growth kinetics , 2007 .

[18]  P. J. Blatz,et al.  Note on the Kinetics of Systems Manifesting Simultaneous Polymerization-Depolymerization Phenomena , 1945 .

[19]  S. Hamzehlou,et al.  Detailed Microstructure Investigation of Acrylate/Methacrylate Functional Copolymers by Kinetic Monte Carlo Simulation , 2012 .

[20]  D. Ramkrishna,et al.  On the solution of population balance equations by discretization—II. A moving pivot technique , 1996 .

[21]  Vanni,et al.  Approximate Population Balance Equations for Aggregation-Breakage Processes. , 2000, Journal of colloid and interface science.

[22]  J. Prüss,et al.  Modeling of the Suspension Polymerization Process Using a Particle Population Balance , 1999 .

[23]  Margaritis Kostoglou Extended cell average technique for the solution of coagulation equation. , 2007, Journal of colloid and interface science.

[24]  C. Kiparissides,et al.  Prediction of the molecular and polymer solution properties of LDPE in a high-pressure tubular reactor using a novel Monte Carlo approach , 2011 .

[25]  S. Lazzari,et al.  Fractal-like structures in colloid science. , 2016, Advances in colloid and interface science.

[26]  Stelios Rigopoulos,et al.  Finite‐element scheme for solution of the dynamic population balance equation , 2003 .

[27]  Bertrand Lods,et al.  Generalized Collocation Methods , 2008 .

[28]  P. V. D. Hof,et al.  A control oriented study on the numerical solution of the population balance equation for crystallization processes , 2009 .

[29]  R. Fox,et al.  Population balance modeling of aggregation and breakage in turbulent Taylor-Couette flow. , 2007, Journal of colloid and interface science.

[30]  F. Teymour,et al.  Analysis of the Dynamics of Gelation in Polymerization Reactors Using the , 1994 .

[31]  Richard M Maceiczyk,et al.  Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth. , 2017, Accounts of chemical research.

[32]  Doraiswami Ramkrishna,et al.  Population Balances: Theory and Applications to Particulate Systems in Engineering , 2000 .

[33]  Cleve B. Moler,et al.  Numerical computing with MATLAB , 2004 .

[34]  S. Lazzari,et al.  Bulk Crosslinking Copolymerization: Comparison of Different Modeling Approaches , 2014 .

[35]  M. Morbidelli,et al.  A multiscale view of therapeutic protein aggregation: A colloid science perspective , 2015, Biotechnology journal.

[36]  M. Morbidelli,et al.  Modeling structure effects on aggregation kinetics in colloidal dispersions , 2003 .

[37]  K. Jensen,et al.  Modeling of the formation kinetics and size distribution evolution of II–VI quantum dots , 2017 .

[38]  Patrick T. Spicer,et al.  Coagulation and fragmentation: Universal steady‐state particle‐size distribution , 1996 .

[39]  R. Braatz,et al.  High resolution algorithms for multidimensional population balance equations , 2004 .

[40]  Diego Bertin,et al.  Population balance discretization for growth, attrition, aggregation, breakage and nucleation , 2016, Comput. Chem. Eng..

[41]  G. Storti,et al.  Kinetic Modeling of Precipitation and Dispersion Polymerizations , 2017 .

[42]  S. Katz,et al.  Some problems in particle technology: A statistical mechanical formulation , 1964 .

[43]  S. Friedlander Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics , 2000 .

[44]  A. Hamielec,et al.  Modeling of network formation in free radical polymerization , 1989 .

[45]  S. Lazzari,et al.  Interplay between Aggregation and Coalescence of Polymeric Particles: Experimental and Modeling Insights. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[46]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[47]  Laura Gardini,et al.  Use of orthogonal collocation on finite elements with moving boundaries for fixed bed catalytic reactor simulation , 1985 .

[48]  José M. Asua,et al.  A new approach for mathematical modeling of the dynamic development of particle morphology , 2016 .

[49]  N. Lebovka Aggregation of Charged Colloidal Particles , 2012 .

[50]  L. I. Costa,et al.  Control Strategy and Comparison of Tuning Methods for Continuous Lactide Ring‐Opening Polymerization , 2016 .

[51]  Stefano Lazzari,et al.  Population Balance Modeling of Aggregation and Coalescence in Colloidal Systems , 2014 .

[52]  S. Schwartz,et al.  Properties and evolution of aerosols with size distributions having identical moments , 1998 .

[53]  W. Pauer,et al.  Process Model for Styrene and n-Butyl Acrylate Emulsion Copolymerization in Smart-Scale Tubular Reactor , 2016 .

[54]  W. Koch,et al.  The effect of particle coalescence on the surface area of a coagulating aerosol , 1990 .

[55]  Michael J. Hounslow,et al.  Finite-element methods for steady-state population balance equations , 1998 .

[56]  Zoltan K. Nagy,et al.  Graphical processing unit (GPU) acceleration for numerical solution of population balance models using high resolution finite volume algorithm , 2016, Comput. Chem. Eng..

[57]  A. Brandolin,et al.  Recovery of molecular weight distributions from transformed domains. Part I. Application of pgf to mass balances describing reactions involving free radicals , 2002 .

[58]  Wolfgang Peukert,et al.  A population balance model of quantum dot formation: Oriented growth and ripening of ZnO , 2012 .