Spectrum of controlling and observing complex networks

The complex interactions inherent in real-world networks grant us precise system control via manipulation of a subset of nodes. It turns out that the extent to which we can exercise this control depends sensitively on the number of nodes perturbed.

[1]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[3]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[4]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[5]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[6]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[7]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[8]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[9]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[10]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[11]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[13]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[14]  Roy M. Howard,et al.  Linear System Theory , 1992 .

[15]  Fan Chung Graham,et al.  The Spectra of Random Graphs with Given Expected Degrees , 2004, Internet Math..

[16]  Carlos J. Melián,et al.  The nested assembly of plant–animal mutualistic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[18]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[19]  I. Sokolov,et al.  Reshuffling scale-free networks: from random to assortative. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[21]  B Kahng,et al.  Spectral densities of scale-free networks. , 2007, Chaos.

[22]  J. Coron Control and Nonlinearity , 2007 .

[23]  F. Garofalo,et al.  Controllability of complex networks via pinning. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[25]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[26]  Magnus Egerstedt,et al.  Controllability of Multi-Agent Systems from a Graph-Theoretic Perspective , 2009, SIAM J. Control. Optim..

[27]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[28]  Amedeo Caflisch,et al.  The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. , 2010, Ecology letters.

[29]  Asuman E. Ozdaglar,et al.  Spread of (Mis)Information in Social Networks , 2009, Games Econ. Behav..

[30]  Reuven Cohen,et al.  Complex Networks: Structure, Robustness and Function , 2010 .

[31]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[32]  F. Müller,et al.  Few inputs can reprogram biological networks , 2011, Nature.

[33]  Mehran Mesbahi,et al.  Dynamics and control of state-dependent networks for probing genomic organization , 2011, Proceedings of the National Academy of Sciences.

[34]  Tamás Vicsek,et al.  Controlling edge dynamics in complex networks , 2011, Nature Physics.

[35]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[36]  Thilo Gross,et al.  All scale-free networks are sparse. , 2011, Physical review letters.

[37]  Sean F. Everton Disrupting Dark Networks , 2012 .

[38]  Noah J. Cowan,et al.  Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks , 2011, PloS one.

[39]  Adilson E Motter,et al.  Network observability transitions. , 2012, Physical review letters.

[40]  Martin Vetterli,et al.  Locating the Source of Diffusion in Large-Scale Networks , 2012, Physical review letters.

[41]  S. Carpenter,et al.  Anticipating Critical Transitions , 2012, Science.

[42]  Jie Ren,et al.  Controlling complex networks: How much energy is needed? , 2012, Physical review letters.

[43]  J. Kurths,et al.  Identifying Controlling Nodes in Neuronal Networks in Different Scales , 2012, PloS one.

[44]  Wen-Xu Wang,et al.  Exact controllability of complex networks , 2013, Nature Communications.

[45]  Peter J. Menck,et al.  How basin stability complements the linear-stability paradigm , 2013, Nature Physics.

[46]  Albert-László Barabási,et al.  Universality in network dynamics , 2013, Nature Physics.

[47]  Jie Sun,et al.  Controllability transition and nonlocality in network control. , 2013, Physical review letters.

[48]  Albert-László Barabási,et al.  Observability of complex systems , 2013, Proceedings of the National Academy of Sciences.

[49]  S. P. Cornelius,et al.  Realistic control of network dynamics , 2013, Nature Communications.

[50]  Endre Csóka,et al.  Emergence of bimodality in controlling complex networks , 2013, Nature Communications.

[51]  Jobst Heitzig,et al.  How dead ends undermine power grid stability , 2014, Nature Communications.

[52]  Mario di Bernardo,et al.  In-Vivo Real-Time Control of Protein Expression from Endogenous and Synthetic Gene Networks , 2014, PLoS Comput. Biol..

[53]  Derek Ruths,et al.  Control Profiles of Complex Networks , 2014, Science.

[54]  Francesco Bullo,et al.  Controllability Metrics, Limitations and Algorithms for Complex Networks , 2013, IEEE Transactions on Control of Network Systems.

[55]  Ginestra Bianconi,et al.  Network controllability is determined by the density of low in-degree and out-degree nodes. , 2014, Physical review letters.

[56]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[57]  George J. Pappas,et al.  Minimal actuator placement with optimal control constraints , 2015, 2015 American Control Conference (ACC).

[58]  Sean N. Brennan,et al.  Observability and Controllability of Nonlinear Networks: The Role of Symmetry , 2013, Physical review. X.

[59]  John Lygeros,et al.  On Submodularity and Controllability in Complex Dynamical Networks , 2014, IEEE Transactions on Control of Network Systems.