Differentiated Planetesimals and the Parent Bodies of Chondrites

Meteorites are samples of dozens of small planetary bodies that formed in the early Solar System. They exhibit great petrologic diversity, ranging from primordial accretional aggregates (chondrites), to partially melted residues (primitive achondrites), to once fully molten magmas (achondrites). It has long been thought that no single parent body could be the source of more than one of these three meteorite lithologies. This view is now being challenged by a variety of new measurements and theoretical models, including the discovery of primitive achondrites, paleomagnetic analyses of chondrites, thermal modeling of planetesimals, the discoveries of new metamorphosed chondrites and achondrites with affinities to some chondrite groups, and the possible identification of extant partially differentiated asteroids. These developments collectively suggest that some chondrites could in fact be samples of the outer, unmelted crusts of otherwise differentiated planetesimals with silicate mantles and metallic cores...

[1]  I. Hutcheon,et al.  Chemical and isotopic constraints on the formation and crystallization of SA-1, a basaltic Allende plagioclase-olivine inclusion , 1992 .

[2]  G. Wasserburg,et al.  Demonstration of 26 Mg excess in Allende and evidence for 26 Al , 1976 .

[3]  K. Keil,et al.  A composite Fe,Ni‐FeS and enstatite‐forsterite‐diopside‐glass vitrophyre clast in the Larkman Nunatak 04316 aubrite: Origin by pyroclastic volcanism , 2011 .

[4]  M. Bizzarro,et al.  Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk , 2009, Science.

[5]  Otto Eugster,et al.  Irradiation Records, Cosmic-Ray Exposure Ages, and Transfer Times of Meteorites , 2006 .

[6]  P. Warren Stable isotopes and the noncarbonaceous derivation of ureilites, in common with nearly all differentiated planetary materials , 2011 .

[7]  C. Agee,et al.  Pressure‐temperature phase diagram for the Allende meteorite , 1995 .

[8]  T. Mccoy A pyroxene-oldhamite clast in Bustee: Igneous aubritic oldhamite and a mechanism for the Ti enrichment in aubritic troilite , 1998 .

[9]  F. Nimmo,et al.  Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets , 2009 .

[10]  Harold F. Levison,et al.  Asteroids Were Born Big , 2009, 0907.2512.

[11]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[12]  E. Asphaug,et al.  Chondrule formation during planetesimal accretion , 2011 .

[13]  I. Sanders,et al.  A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies , 2006 .

[14]  Julie Ziffer,et al.  Spectroscopy of B-type Asteroids: Subgroups and meteorite analogs , 2010 .

[15]  A. Ruzicka,et al.  Comparative petrology of silicates in the Udei Station (IAB) and Miles (IIE) iron meteorites: Implications for the origin of silicate-bearing irons , 2010 .

[16]  A. J. Easton STUDIES OF KAMACITE, PERRYITE AND SCHREIBERSITE IN E‐CHONDRITES AND AUBRITES , 1986 .

[17]  E. Anders,et al.  THE RECORD IN THE METEORITES. III. ON THE DEVELOPMENT OF METEORITES IN ASTEROIDAL BODIES , 1960 .

[18]  A. Nathues Spectral study of the Eunomia asteroid family Part II: The small bodies , 2010 .

[19]  J.,et al.  Particle-Gas Dynamics and Primary Accretion , 2005 .

[20]  Richard P. Binzel,et al.  Origin, Internal Structure and Evolution of 4 Vesta , 2011 .

[21]  H. McSween,et al.  A Thermal Model for the Differentiation of Asteroid 4 Vesta, Based on Radiogenic Heating☆ , 1998 .

[22]  R. Gil-Hutton,et al.  V-type asteroids in the middle main belt , 2007, 0707.1012.

[23]  Y. Ricard,et al.  Thermal evolution and differentiation of planetesimals and planetary embryos , 2012 .

[24]  S. Weidenschilling,et al.  Accretion Dynamics and Timescales: Relation to Chondrites , 2006 .

[25]  R. Carlson,et al.  Contributors to chromium isotope variation of meteorites , 2010 .

[26]  Francis Albarède,et al.  Comparative stable isotope geochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites , 2007 .

[27]  Derek C. Richardson,et al.  Catastrophic disruption of asteroids and family formation: a review of numerical simulations including both fragmentation and gravitational reaccumulations , 2004 .

[28]  R. W. Bild,et al.  Netscha�vo: A New Class of Chondritic Meteorite , 1977, Science.

[29]  G. Libourel,et al.  Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites , 2011 .

[30]  C. Pillinger,et al.  The carbon and nitrogen isotopic composition of ureilites: Implications for their genesis , 1985 .

[31]  A. Cellino,et al.  Asteroid Dynamical Families , 2010 .

[32]  Zeljko Ivezic,et al.  The Size Distributions of Asteroid Families in the SDSS Moving Object Catalog 4 , 2008, 0807.3762.

[33]  Aaron T. Kuan,et al.  An Ancient Core Dynamo in Asteroid Vesta , 2012, Science.

[34]  K. Righter,et al.  Temperature and oxygen fugacity constraints on CK and R chondrites and implications for water and oxidation in the early solar system , 2007 .

[35]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[36]  I. Hutcheon,et al.  26Al in plagioclase-rich chondrules in carbonaceous chondrites: Evidence for an extended duration of chondrule formation , 2009 .

[37]  L. Taylor,et al.  Rhenium-osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites , 2012 .

[38]  S. Weidenschilling,et al.  Particle-Gas Dynamics and Primary Accretion , 2006 .

[39]  C. Ormel,et al.  The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks , 2010, 1007.0916.

[40]  Karim Shariff,et al.  Toward Planetesimals: Dense Chondrule Clumps in the Protoplanetary Nebula , 2008, 0804.3526.

[41]  Linda T. Elkins-Tanton,et al.  Chondrites as samples of differentiated planetesimals , 2009 .

[42]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[43]  S. Debei,et al.  Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System , 2011, Science.

[44]  K. Mathew,et al.  Nitrogen in chondritic metal , 2005 .

[45]  J. Leliwa-kopystyński,et al.  The impact origin of Eunomia and Themis families , 2009 .

[46]  R. Clayton,et al.  A classification of meteorites based on oxygen isotopes , 1976 .

[47]  Kevin Righter,et al.  Mechanisms of metal-silicate equilibration in the terrestrial magma ocean , 2003 .

[48]  J. Kerridge Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. , 1985, Geochimica et cosmochimica acta.

[49]  K. Keil,et al.  Igneous history of the aubrite parent asteroid - Evidence from the Norton County enstatite achondrite , 1988 .

[50]  A. Rubin,et al.  Abee and related EH chondrite impact-melt breccias , 1997 .

[51]  Alessandro Morbidelli,et al.  Iron meteorites as remnants of planetesimals formed in the terrestrial planet region , 2006, Nature.

[52]  R. Paniello,et al.  Nature of volatile depletion and genetic relationships in enstatite chondrites and aubrites inferred from Zn isotopes , 2011 .

[53]  Hideyasu Kojima,et al.  Magnetic properties and natural remanent magnetization of carbonaceous chondrites containing pyrrhotite , 1991 .

[54]  Tomoki Nakamura,et al.  Heavily metamorphosed clasts from the CV chondrite breccias Mokoia and Yamato‐86009 , 2012 .

[55]  Gerald J. Wasserburg,et al.  Mg diffusion in anorthite: implications for the formation of early solar system planetesimals , 1998 .

[56]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[57]  J. Birck,et al.  Widespread 54Cr Heterogeneity in the Inner Solar System , 2007 .

[58]  Eric Blackman,et al.  Evidence for a Dynamo in the Main Group Pallasite Parent Body , 2012, Science.

[59]  H. Whitechurch,et al.  Magnetic properties and paleointensity determination of seven H-group chondrites , 1983 .

[60]  H. Urey THE COSMIC ABUNDANCES OF POTASSIUM, URANIUM, AND THORIUM AND THE HEAT BALANCES OF THE EARTH, THE MOON, AND MARS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. Bizzarro,et al.  The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk , 2012, Science.

[62]  H. Haack,et al.  Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions , 2004, Nature.

[63]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[64]  A. Rubin,et al.  Silica and Pyroxene in IVA Irons; Possible Formation of the IVA Magma by Impact Melting and Reduction of L-LL-Chondrite Materials Followed by Crystallization and Cooling , 2006 .

[65]  R. Ballouz Planetesimal formation by turbulent concentration . , 2012 .

[66]  B. Wood,et al.  Late Accretion on the Earliest Planetesimals Revealed by the Highly Siderophile Elements , 2012, Science.

[67]  R. Binzel,et al.  Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites , 1993, Science.

[68]  T. Spohn,et al.  Numerical Modeling of 26Al-Induced Radioactive Melting of Asteroids Considering Accretion , 2002 .

[69]  T. Mccoy,et al.  Systematics and Evaluation of Meteorite Classification , 2006 .

[70]  B. Weiss,et al.  Paleomagnetic Records of Meteorites and Early Planetesimal Differentiation , 2010 .

[71]  B. Weiss,et al.  Magnetic evidence for a partially differentiated carbonaceous chondrite parent body , 2010, Proceedings of the National Academy of Sciences.

[72]  D. Strangway,et al.  Magnetic studies of meteorites , 1988 .

[73]  T N Titus,et al.  Dawn at Vesta: Testing the Protoplanetary Paradigm , 2012, Science.

[74]  K. Tsiganis,et al.  Short-lived asteroids in the 7/3 Kirkwood gap and their relationship to the Koronis and Eos families , 2003 .

[75]  E. Scott,et al.  Group IIE Iron Meteorites; Metal Composition, Formation, Relationship to Ordinary Chondrites , 2011 .

[76]  M. Burchell,et al.  The impact origin of Eunomia and Themis families , 2003 .

[77]  A. Makishima,et al.  CHROMIUM ISOTOPE SYSTEMATICS OF ACHONDRITES: CHRONOLOGY AND ISOTOPIC HETEROGENEITY OF THE INNER SOLAR SYSTEM BODIES , 2010 .

[78]  R. Clayton,et al.  Multiple parent bodies of polymict brecciated meteorites , 1978 .

[79]  B. Lavielle,et al.  Isotopic signatures and origin of nitrogen in IIE and IVA iron meteorites , 2000 .

[80]  D. Strangway,et al.  A paleomagnetic conglomerate test using the Abee E4 meteorite , 1983 .

[81]  J. Vallée Magnetic fields in the nearby Universe, as observed in solar and planetary realms, stars, and interstellar starforming nurseries , 2011 .

[82]  A. Ruzicka,et al.  Differentiation and evolution of the IVA meteorite parent body: Clues from pyroxene geochemistry in the Steinbach stony‐iron meteorite , 2006 .

[83]  T. Mccoy,et al.  Chronology and Petrology of Silicates From IIE Iron Meteorites: Evidence of a Complex Parent Body Evolution , 2000 .

[84]  J. Goldsteina,et al.  Iron meteorites : Crystallization , thermal history , parent bodies , and origin , 2009 .

[85]  W. Holt,et al.  Plate Motions and Stresses from Global Dynamic Models , 2012, Science.

[86]  A. Irving,et al.  Mn-Cr Isotope Systematics and Excess of 54-Cr in Metachondrite Northwest Africa 3133 , 2011 .

[87]  P. Rochette,et al.  Magnetic properties of a freshly fallen LL ordinary chondrite: the Bensour meteorite , 2003 .

[88]  J. Brenan Planetary science: Ubiquitous late veneer , 2012 .

[89]  K. Keil,et al.  The fate of pyroclasts produced in explosive eruptions on the asteroid 4 Vesta , 1997 .

[90]  J. Boesenberg An Oxygen Isotope Mixing Model for the Northwest Africa 011 Basaltic Achondrite , 2003 .

[91]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[92]  V. Solomatov,et al.  Fluid Dynamics of a Terrestrial Magma Ocean , 2000 .

[93]  Nancy L. Chabot,et al.  Group IVA irons: New constraints on the crystallization and cooling history of an asteroidal core with a complex history , 2011 .

[94]  B. Marty,et al.  Molybdenum Evidence for Inherited Planetary Scale Isotope Heterogeneity of the Protosolar Nebula , 2001, astro-ph/0109549.

[95]  F. Moynier,et al.  The Cu isotopic composition of iron meteorites , 2012 .

[96]  L. Schultz,et al.  Noble gas record, collisional history, and pairing of CV, CO, CK, and other carbonaceous chondrites , 2000 .

[97]  Alain Doressoundiram,et al.  EOS Family: A Spectroscopic Study , 1998 .

[98]  A. Shukolyukov,et al.  Manganese–chromium isotope systematics of carbonaceous chondrites , 2006 .

[99]  D. DePaolo,et al.  Stable calcium isotopic composition of meteorites and rocky planets , 2010 .

[100]  A. Bouvier,et al.  Sr stable isotope composition of Earth, the Moon, Mars, Vesta and meteorites , 2010 .

[101]  K. Keil,et al.  The CR chondrite clan: Implications for early solar system processes , 2002 .

[102]  Sarvjeet Singh,et al.  History and Origin , 2007 .

[103]  Harold F. Levison,et al.  Dynamical Lifetimes of Objects Injected into Asteroid Belt Resonances , 1997 .

[104]  D. Garrison,et al.  Ar‐Ar ages and thermal histories of enstatite meteorites , 2010 .

[105]  S. Weidenschilling Initial sizes of planetesimals and accretion of the asteroids , 2011 .

[106]  A. Provost,et al.  Radiative heating of carbonaceous near-Earth objects as a cause of thermal metamorphism for CK chondrites , 2012 .

[107]  E. Jarosewich,et al.  Chondrules: First Occurrence in an Iron Meteorite , 1971, Science.

[108]  A. Kearsley,et al.  The relationship between CK and CV chondrites , 2010 .

[109]  Andrew Scott Rivkin,et al.  Yarkovsky footprints in the Eos family , 2006 .

[110]  A. E. Ringwood,et al.  Chemical and genetic relationships among meteorites , 1961 .

[111]  T. Kondo,et al.  Water transport into the deep mantle and formation of a hydrous transition zone , 2004 .

[112]  K. Keil Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies , 2010 .

[113]  T. Mccoy,et al.  History and origin of aubrites , 2003 .

[114]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[115]  K. Keil,et al.  Meteoritic parent bodies: Their number and identification , 2002 .

[116]  C. Floss,et al.  Diopside-bearing EL6 EET 90102: insights from rare earth element distributions , 2001 .

[117]  E. Anders Origin, age, and composition of meteorites , 1964 .

[118]  C. Lorenz,et al.  A Common Parent for IIE Iron Meteorite and H Chondrites , 2012 .

[119]  N. Turner,et al.  Dead Zone Accretion Flows in Protostellar Disks , 2008, 0804.2916.

[120]  D. Bogard K–Ar ages of meteorites: Clues to parent-body thermal histories , 2011 .

[121]  J. Wood Silicate meteorite structures and the origin of the meteorites , 1958 .

[122]  Robert Jedicke,et al.  The Distribution of Basaltic Asteroids in the Main Belt , 2008, 0807.3951.

[123]  H. McSween,et al.  Importance of the accretion process in asteroid thermal evolution: 6 Hebe as an example , 2003 .

[124]  R. B. Georg,et al.  Silicon isotopes in meteorites and planetary core formation , 2011 .

[125]  T. Kleine,et al.  Chemical and Hf-W Isotopic Composition of CV Metachondrite NWA 3133 , 2006 .

[126]  E. A. Lima,et al.  Magnetism on the Angrite Parent Body and the Early Differentiation of Planetesimals , 2008, Science.

[127]  A. Johansen,et al.  Prograde rotation of protoplanets by accretion of pebbles in a gaseous environment , 2009, 0910.1524.

[128]  K. Marti,et al.  Discovery of an Unmelted H-Chondrite Inclusion in an Iron Meteorite , 1995, Science.

[129]  M. Zolensky,et al.  Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? , 1995 .

[130]  M. Zolensky,et al.  Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration , 1998 .

[131]  M. Humayun,et al.  Osmium isotope systematics of ureilites , 2006 .

[132]  J. Wood Physics and Chemistry of Meteorites , 1963 .

[133]  P. C. Hess,et al.  A model for the thermal and chemical evolution of the Moon's interior: implications for the onset of mare volcanism , 1995 .

[134]  Fernando Roig,et al.  Reanalysis of asteroid families structure through visible spectroscopy , 2005 .

[135]  R. Clayton,et al.  Bocaiuva - A silicate-inclusion bearing iron meteorite related to the Eagle-Station pallasites , 1985 .

[136]  C. Floss,et al.  Northwest Africa 011: A “eucritic” basalt from a non‐eucrite parent body , 2005 .

[137]  U. Krähenbühl,et al.  Titanium isotopes and the radial heterogeneity of the solar system , 2008 .

[138]  G. Libourel,et al.  Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin , 2007 .

[139]  Alain Doressoundiram,et al.  Fugitives from the Eos Family: First Spectroscopic Confirmation☆ , 2000 .

[140]  R. Carlson,et al.  The chromium isotopic composition of Almahata Sitta , 2010 .

[141]  T. Burbine,et al.  Mineralogical analysis of the Eos family from near-infrared spectra , 2008 .

[142]  I. Richter,et al.  Possible evidence for partial differentiation of asteroid Lutetia from Rosetta , 2012 .

[143]  G. Collins,et al.  Numerical modelling of heating in porous planetesimal collisions , 2010 .

[144]  F. D. Stacey,et al.  Thermomagnetic properties, natural magnetic moments, and magnetic anisotropies of some chondritic meteorites , 1961 .

[145]  D. Kring,et al.  40Ar‐39Ar ages of H‐chondrite impact melt breccias , 2009 .

[146]  Young,et al.  Fluid flow in chondritic parent bodies: deciphering the compositions of planetesimals , 1999, Science.

[147]  J. Crowley,et al.  Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos , 2013 .

[148]  M. Ebihara,et al.  Petrology and chemistry of the Miles IIE iron. I: Description and petrology of twenty new silicate inclusions , 1997 .

[149]  R. Wieler,et al.  Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth , 2011 .

[150]  H Y McSween,et al.  Spectroscopic Characterization of Mineralogy and Its Diversity Across Vesta , 2012, Science.

[151]  M. Humayun,et al.  Siderophile trace elements in metals and sulfides in enstatite achondrites record planetary differentiation in an enstatite chondritic parent body , 2012 .

[152]  L. Schultz,et al.  New noble gas data of primitive and differentiated achondrites including Northwest Africa 011 and Tafassasset , 2003 .

[153]  Alan E. Rubin,et al.  Thermal Metamorphism in Chondrites , 2006 .

[154]  E. Anders,et al.  Theories on the origin of meteorites , 1961 .

[155]  S. Poli,et al.  Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation , 1998 .

[156]  R. Clayton,et al.  Oxygen isotope studies of achondrites , 1996 .

[157]  K. Keil,et al.  A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB‐Winonaite parent body , 2000 .

[158]  S. Sahijpal,et al.  Did the carbonaceous chondrites evolve in the crustal regions of partially differentiated asteroids , 2011 .

[159]  T. Ushikubo,et al.  Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules , 2012 .