Measurement of the cosmic ray antiproton/proton flux ratio at TeV energies with the ARGO-YBJ detector

Cosmic ray antiprotons provide an important probe to study the cosmic ray propagation in the interstellar space and to investigate the existence of dark matter. Acting the Earth-Moon system as a magnetic spectrometer, paths of primary antiprotons are deflected in the opposite sense with respect to those of the protons in their way to the Earth. This effect allows, in principle, the search for antiparticles in the direction opposite to the observed deficit of cosmic rays due to the Moon (the so-called ‘‘Moon shadow’’ ). The ARGO-YBJ experiment, located at the Yangbajing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g = cm 2 ), is particularly effective in measuring the cosmic ray antimatter content via the observation of the cosmic rays shadowing effect due to: (1) good angular resolution, pointing accuracy and long-term stability; (2) low energy threshold; (3) real sensitivity to the geomagnetic field. Based on all the data recorded during the period from July 2006 through November 2009 and on a full Monte Carlo simulation, we searched for the existence of the shadow cast by antiprotons in the TeVenergy region. No evidence of the existence of antiprotons is found in this energy region. Upper limits to the (cid:1) p=p flux ratio are set to 5% at a median energy of 1.4 TeVand 6% at 5 TeV with a confidence level of 90%. In the TeV energy range these limits are the lowest available.

[1]  R. Iuppa,et al.  Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment , 2011, 1107.3405.

[2]  Danzengluobu,et al.  MEAN INTERPLANETARY MAGNETIC FIELD MEASUREMENT USING THE ARGO-YBJ EXPERIMENT , 2011, 1101.4261.

[3]  F. T. Collaboration,et al.  The Argo-Ybj Experiment Progresses and Future Extension , 2010, 1006.4298.

[4]  R. Iuppa,et al.  Simulation of the cosmic ray Moon shadow in the geomagnetic field , 2009, 0907.1173.

[5]  S. Budd,et al.  Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon , 2011 .

[6]  A. V. Karelin,et al.  PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy. , 2010, Physical review letters.

[7]  A. Surdo,et al.  ARGO-YBJ detector simulation using GEANT4 , 2010 .

[8]  K. C. Ravindran,et al.  The angular resolution of the GRAPES-3 array from the shadows of the Moon and the Sun , 2010 .

[9]  Jeremiah Zhe Liu,et al.  Temperature effect on RPC performance in the ARGO-YBJ experiment , 2009 .

[10]  G. Kane,et al.  PAMELA satellite data as a signal of non-thermal wino LSP dark matter , 2009, 0906.4765.

[11]  P. Blasi,et al.  High-energy antiprotons from old supernova remnants. , 2009, Physical review letters.

[12]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[13]  P. Blasi Origin of the positron excess in cosmic rays. , 2009, Physical review letters.

[14]  P. Brun,et al.  Constraints on WIMP dark matter from the high energy PAMELA p/p data. , 2008, Physical review letters.

[15]  M Nagni,et al.  New measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation. , 2008, Physical review letters.

[16]  Mario Kadastik,et al.  Model-independent implications of the e , p cosmic ray spectra on properties of Dark Matter , 2008, 0809.2409.

[17]  Danzengluobu,et al.  Software timing calibration of the ARGO-YBJ detector , 2009 .

[18]  G. C. Barbarino,et al.  Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.

[19]  E. al.,et al.  Moon shadow by cosmic rays under the influence of geomagnetic field and search for antiprotons at multi-TeV energies , 2007, 0707.3326.

[20]  P. Bernardini,et al.  Detector Time Offset and Off-line Calibration in EAS Experiments , 2007, physics/0701291.

[21]  A. Strong,et al.  Cosmic-Ray Propagation and Interactions in the Galaxy , 2007, astro-ph/0701517.

[22]  Danzengluobu,et al.  Anisotropy and Corotation of Galactic Cosmic Rays , 2006, Science.

[23]  Danzengluobu,et al.  Layout and performance of RPCs used in the Argo-YBJ experiment , 2006 .

[24]  F. T. Collaboration,et al.  Observation of the anisotropy of 10 TeV primary cosmic ray nuclei flux with the Super-Kamiokande-I detector , 2005, astro-ph/0508468.

[25]  E. al.,et al.  Measurement of the shadowing of high-energy cosmic rays by the Moon: A search for TeV-energy antiprotons , 2005, astro-ph/0503472.

[26]  R. Webb,et al.  Moon and Sun shadowing effect in the MACRO detector , 2003 .

[27]  E. Bugaev Matter-antimatter asymmetry , 2003 .

[28]  Origin of the matter-antimatter asymmetry , 2003, hep-ph/0303065.

[29]  S. Karpov,et al.  Observation of the Moon Shadow in Cosmic Ray Muons , 2002 .

[30]  J. Ormes,et al.  Secondary Antiprotons and Propagation of Cosmic Rays in the Galaxy and Heliosphere , 2001, astro-ph/0106567.

[31]  J. Hörandel,et al.  On the knee in the energy spectrum of cosmic rays , 2002, astro-ph/0210453.

[32]  Antiprotons from primordial black holes , 2001, astro-ph/0112486.

[33]  Gaelle Boudoul,et al.  Antiprotons from Spallations of Cosmic Rays on Interstellar Matter , 2001 .

[34]  Danzengluobu,et al.  A Study of the Shadowing of Galactic Cosmic Rays by the Sun in a Quiet Phase of Solar Activity with the Tibet Air Shower Array , 2000, astro-ph/0008159.

[35]  G. J. Alner,et al.  Observation of a shadow of the Moon in the underground muon flux in the Soudan 2 detector , 2000 .

[36]  A. Sakharov,et al.  Possible Origin of Antimatter Regions in the Baryon Dominated Universe , 2000, hep-ph/0003285.

[37]  R. Webb,et al.  Observation of the shadowing of cosmic rays by the Moon using a deep underground detector , 1998 .

[38]  Italy.,et al.  Which fraction of the measured cosmic-ray antiprotons might be due to neutralino annihilation in the galactic halo? , 1998, astro-ph/9804137.

[39]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[40]  A. Karle,et al.  Methods to determine the angular resolution of the HEGRA extended air shower scintillator array , 1996 .

[41]  A. Wolfendale,et al.  Anti-matter in the Universe on very large scales , 1994 .

[42]  Green,et al.  Observation of the shadows of the Moon and Sun using 100 TeV cosmic rays. , 1994, Physical review. D, Particles and fields.

[43]  T. Weekes,et al.  Antimatter and the Moon , 1994, Nature.

[44]  Goodman,et al.  Observation of shadowing of ultrahigh-energy cosmic rays by the Moon and the Sun. , 1991, Physical review. D, Particles and fields.

[45]  R. Lestienne,et al.  Can we detect antimatter from other galaxies by the use of the Earth's magnetic field and the Moon as an absorber? , 1990 .

[46]  R. Golden,et al.  The role of antiprotons in cosmic-ray physics , 1988 .

[47]  A. Stephens Antiproton upper limits from the observed charge ratio of muons and their implications for cosmic ray models , 1985 .

[48]  A. Wolfendale,et al.  The case for antiparticles in the extragalactic cosmic radiation , 1984, Nature.

[49]  G. Clark ARRIVAL DIRECTIONS OF COSMIC-RAY AIR SHOWERS FROM THE NORTHERN SKY , 1957 .