The influence of posterior parietal cortex on extrastriate visual activity: A concurrent TMS and fast optical imaging study

The posterior parietal cortex (PPC) is a critical node in attentional and saccadic eye movement networks of the cerebral cortex, exerting top-down control over activity in visual cortex. Here, we sought to further elucidate the properties of PPC feedback by providing a time-resolved map of functional connectivity between parietal and occipital cortex using single-pulse TMS to stimulate the left PPC while concurrently recording fast optical imaging data from bilateral occipital cortex. Magnetic stimulation of the PPC induced transient ipsilateral occipital activations (BA 18) 24-48ms post-TMS. Concurrent TMS and fast optical imaging results demonstrate a clear influence of PPC stimulation on activity within human extrastriate visual cortex and further extend this time- and space-resolved method for examining functional connectivity.

[1]  C. Genovese,et al.  Spatial Updating in Human Parietal Cortex , 2003, Neuron.

[2]  S. Yantis,et al.  Transient neural activity in human parietal cortex during spatial attention shifts , 2002, Nature Neuroscience.

[3]  Justin A. Harris,et al.  Accurate and Rapid Estimation of Phosphene Thresholds (REPT) , 2011, PloS one.

[4]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[5]  Monica Fabiani,et al.  The event-related optical signal (EROS) in visual cortex: replicability, consistency, localization, and resolution. , 2003, Psychophysiology.

[6]  Gabriele Gratton,et al.  Effects of measurement method, wavelength, and source-detector distance on the fast optical signal , 2006, NeuroImage.

[7]  N. Parks Concurrent application of TMS and near-infrared optical imaging: methodological considerations and potential artifacts , 2013, Front. Hum. Neurosci..

[8]  Vincent Walsh,et al.  The perceptual and functional consequences of parietal top-down modulation on the visual cortex. , 2009, Cerebral cortex.

[9]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[10]  H. Jasper,et al.  The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[11]  Uwe Herwig,et al.  Using the International 10-20 EEG System for Positioning of Transcranial Magnetic Stimulation , 2004, Brain Topography.

[12]  G Gratton,et al.  Removing the heart from the brain: compensation for the pulse artifact in the photon migration signal. , 1995, Psychophysiology.

[13]  M. Wolf,et al.  Near infrared spectroscopy to study the brain: an overview , 2008 .

[14]  P. Rossini,et al.  Consensus paper: Combining transcranial stimulation with neuroimaging , 2009, Brain Stimulation.

[15]  Silvia Savazzi,et al.  Can IPS reach visual awareness without V1? Evidence from TMS in healthy subjects and hemianopic patients , 2014, Neuropsychologia.

[16]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[17]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[18]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[19]  D. Hood,et al.  Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation. , 1995, Psychophysiology.

[20]  Diane M. Beck,et al.  Examining cortical dynamics and connectivity with simultaneous single-pulse transcranial magnetic stimulation and fast optical imaging , 2012, NeuroImage.

[21]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[22]  Monica Fabiani,et al.  Validation of a method for coregistering scalp recording locations with 3D structural MR images , 2008, Human brain mapping.

[23]  Á. Pascual-Leone,et al.  Enhanced visual spatial attention ipsilateral to rTMS-induced 'virtual lesions' of human parietal cortex , 2001, Nature Neuroscience.

[24]  R M Müri,et al.  Effects of single-pulse transcranial magnetic stimulation over the prefrontal and posterior parietal cortices during memory-guided saccades in humans. , 1996, Journal of neurophysiology.

[25]  Monica Fabiani,et al.  Fast Optical Imaging of Human Brain Function , 2010, Front. Hum. Neurosci..

[26]  Silvia Savazzi,et al.  Interhemispheric transfer of phosphenes generated by occipital versus parietal transcranial magnetic stimulation , 2008, Experimental Brain Research.

[27]  M. Corbetta,et al.  Top-Down Control of Human Visual Cortex by Frontal and Parietal Cortex in Anticipatory Visual Spatial Attention , 2008, The Journal of Neuroscience.

[28]  A. Canavan,et al.  Frontal and parietal transcranial magnetic stimulation (TMS) disturbs programming of saccadic eye movements , 1995, Journal of the Neurological Sciences.

[29]  Vincent Walsh,et al.  Right parietal cortex plays a critical role in change blindness. , 2006, Cerebral cortex.

[30]  Sven Bestmann,et al.  Studying the Role of Human Parietal Cortex in Visuospatial Attention with Concurrent TMS–fMRI , 2010, Cerebral cortex.

[31]  D. Hood,et al.  Fast and Localized Event-Related Optical Signals (EROS) in the Human Occipital Cortex: Comparisons with the Visual Evoked Potential and fMRI , 1997, NeuroImage.

[32]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[33]  Gregor Thut,et al.  Brain activity underlying visual perception and attention as inferred from TMS–EEG: A review , 2012, Brain Stimulation.

[34]  Mark D'Esposito,et al.  Top-down flow of visual spatial attention signals from parietal to occipital cortex. , 2009, Journal of vision.

[35]  Nikolaus Weiskopf,et al.  Hemispheric Differences in Frontal and Parietal Influences on Human Occipital Cortex: Direct Confirmation with Concurrent TMS–fMRI , 2009, Journal of Cognitive Neuroscience.

[36]  S. Savazzi,et al.  Waves of awareness for occipital and parietal phosphenes perception , 2015, Neuropsychologia.

[37]  S. Rossi,et al.  Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research , 2009, Clinical Neurophysiology.

[38]  R. Deichmann,et al.  Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI. , 2008, Cerebral cortex.

[39]  Masako Okamoto,et al.  Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping , 2004, NeuroImage.

[40]  Tirin Moore,et al.  Rapid enhancement of visual cortical response discriminability by microstimulation of the frontal eye field , 2007, Proceedings of the National Academy of Sciences.

[41]  J. Mattingley,et al.  Fast and slow parietal pathways mediate spatial attention , 2004, Nature Neuroscience.

[42]  Sven Bestmann,et al.  Concurrent brain-stimulation and neuroimaging for studies of cognition , 2009, Trends in Cognitive Sciences.

[43]  J. Rothwell,et al.  Mapping causal interregional influences with concurrent TMS–fMRI , 2008, Experimental Brain Research.

[44]  Tirin Moore,et al.  Changes in Visual Receptive Fields with Microstimulation of Frontal Cortex , 2006, Neuron.

[45]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[46]  Gregor Thut,et al.  Dorsal posterior parietal rTMS affects voluntary orienting of visuospatial attention. , 2005, Cerebral cortex.

[47]  Martin Eimer,et al.  Cortico-cortical interactions in spatial attention: A combined ERP/TMS study. , 2006, Journal of neurophysiology.

[48]  C. Miniussi,et al.  Combining TMS and EEG Offers New Prospects in Cognitive Neuroscience , 2009, Brain Topography.

[49]  M. Behrmann,et al.  Parietal cortex and attention , 2004, Current Opinion in Neurobiology.

[50]  Diane M. Beck,et al.  Top-down and bottom-up mechanisms in biasing competition in the human brain , 2009, Vision Research.

[51]  C. Genovese,et al.  Remapping in human visual cortex. , 2007, Journal of neurophysiology.

[52]  D. Beck,et al.  Erratum to: Phosphene-guided transcranial magnetic stimulation of occipital but not parietal cortex suppresses stimulus visibility , 2014, Experimental Brain Research.

[53]  G Gratton,et al.  Comparison of neuronal and hemodynamic measures of the brain response to visual stimulation: An optical imaging study , 2001, Human brain mapping.

[54]  Claus C. Hilgetag,et al.  Characterization of Visual Percepts Evoked by Noninvasive Stimulation of the Human Posterior Parietal Cortex , 2011, PloS one.