Distance paired-domination problems on subclasses of chordal graphs

Let G=(V,E) be a graph without isolated vertices. For a positive integer k, a set S@?V is a k-distance paired-dominating set if each vertex in V-S is within distance k of a vertex in S and the subgraph induced by S contains a perfect matching. In this paper, we present two linear time algorithms to find a minimum cardinality k-distance paired-dominating set in interval graphs and block graphs, which are two subclasses of chordal graphs. In addition, we present a characterization of trees with unique minimum k-distance paired-dominating set.

[1]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[2]  T. Haynes,et al.  Paired‐domination in graphs , 1998 .

[3]  Joanna Raczek Distance paired domination numbers of graphs , 2008, Discret. Math..

[4]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[5]  Teresa W. Haynes,et al.  Trees with Unique Minimum Paired-Dominating Sets , 2004, Ars Comb..

[6]  Ding-Zhu Du,et al.  Paired-domination of Trees , 2003, J. Glob. Optim..

[7]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[8]  T. C. Edwin Cheng,et al.  Paired-domination in inflated graphs , 2004, Theor. Comput. Sci..

[9]  Gerard J. Chang,et al.  Algorithmic Aspects of Domination in Graphs , 1998 .

[10]  D. West Introduction to Graph Theory , 1995 .

[11]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[12]  Sulamita Klein,et al.  Partitioning chordal graphs into independent sets and cliques , 2004, Discret. Appl. Math..

[13]  Zhenbing Zeng,et al.  Labelling algorithms for paired-domination problems in block and interval graphs , 2010, J. Comb. Optim..

[14]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[15]  Michael A. Henning Graphs with large paired-domination number , 2007, J. Comb. Optim..

[16]  T. C. Edwin Cheng,et al.  Paired domination on interval and circular-arc graphs , 2007, Discret. Appl. Math..

[17]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[18]  Sylvain Gravier,et al.  Paired-domination in generalized claw-free graphs , 2007, J. Comb. Optim..