Stimuli‐Responsive Supramolecular Interfaces for Controllable Bioelectrocatalysis

[1]  D. Reinhoudt,et al.  Supramolecular layer-by-layer assembly: alternating adsorptions of guest- and host-functionalized molecules and particles using multivalent supramolecular interactions. , 2005, Journal of the American Chemical Society.

[2]  He Tian,et al.  An electrochemical/photochemical information processing system using a monolayer-functionalized electrode. , 2006, Chemical communications.

[3]  Evgeny Katz,et al.  Biofuel cells controlled by logically processed biochemical signals: towards physiologically regulated bioelectronic devices. , 2009, Chemistry.

[4]  Itamar Willner,et al.  Electrical contacting of glucose oxidase in a redox-active rotaxane configuration. , 2004, Angewandte Chemie.

[5]  Xiaodong Chen,et al.  Ambient Fabrication of Large‐Area Graphene Films via a Synchronous Reduction and Assembly Strategy , 2013, Advanced materials.

[6]  Itamar Willner,et al.  Magnetic control of electrocatalytic and bioelectrocatalytic processes. , 2003, Angewandte Chemie.

[7]  S. Minko,et al.  Multiresponsive, Hierarchically Structured Membranes: New, Challenging, Biomimetic Materials for Biosensors, Controlled Release, Biochemical Gates, and Nanoreactors , 2009 .

[8]  I. Willner,et al.  Controlling chemical reactivity at solid-solution interfaces by means of hydrophobic magnetic nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[9]  Xi Zhang,et al.  Tuning the Amphiphilicity of Building Blocks: Controlled Self‐Assembly and Disassembly for Functional Supramolecular Materials , 2009 .

[10]  Susana Campuzano,et al.  Micromachine-enabled capture and isolation of cancer cells in complex media. , 2011, Angewandte Chemie.

[11]  R. Hotchkiss,et al.  Cell death. , 2009, The New England journal of medicine.

[12]  A. M. van der Bliek,et al.  Mitochondrial Fission, Fusion, and Stress , 2012, Science.

[13]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[14]  Ralph G. Nuzzo,et al.  Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces , 1987 .

[15]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[16]  I. Willner,et al.  Control of the Electronic Properties of Thermosensitive Poly(N‐isopropylacrylamide) and Au‐Nano‐particle/Poly(N‐isopropylacrylamide) Composite Hydrogels upon Phase Transition , 2002 .

[17]  D. Weihs,et al.  Magnetically powered flexible metal nanowire motors. , 2010, Journal of the American Chemical Society.

[18]  Naifei Hu,et al.  Dual-switchable bioelectrocatalysis synergistically controlled by pH and perchlorate concentration based on poly(4-vinylpyridine) films. , 2010, The journal of physical chemistry. B.

[19]  Shaoling Song,et al.  pH-Controllable bioelectrocatalysis based on "on-off" switching redox property of electroactive probes for spin-assembled layer-by-layer films containing branched poly(ethyleneimine). , 2010, The journal of physical chemistry. B.

[20]  Itamar Willner,et al.  Magnetoswitchable electrochemistry gated by alkyl-chain-functionalized magnetic nanoparticles: control of diffusional and surface-confined electrochemical processes. , 2005, Journal of the American Chemical Society.

[21]  Itamar Willner,et al.  A biofuel cell with electrochemically switchable and tunable power output. , 2003, Journal of the American Chemical Society.

[22]  E. Katz,et al.  Switchable electrode interfaces controlled by physical, chemical and biological signals. , 2012, Chemical record.

[23]  Irving Langmuir,et al.  Built-Up Films of Barium Stearate and Their Optical Properties , 1937 .

[24]  Shuxun Cui,et al.  Single-chain mechanics of poly(N,N-diethylacrylamide) and poly(N-isopropylacrylamide): comparative study reveals the effect of hydrogen bond donors. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[25]  I. Willner,et al.  Photoswitchable electrocatalysis and catalyzed chemiluminescence using photoisomerizable monolayer-functionalized surfaces and pt nanoparticles. , 2007, Journal of the American Chemical Society.

[26]  Jacqui F. Young,et al.  Reversible and oriented immobilization of ferrocene-modified proteins. , 2012, Journal of the American Chemical Society.

[27]  F. Caruso,et al.  Next generation, sequentially assembled ultrathin films: beyond electrostatics. , 2007, Chemical Society reviews.

[28]  Dual magnetobiochemical logic control of electrochemical processes based on local interfacial pH changes. , 2009, ACS applied materials & interfaces.

[29]  Zhigang Xie,et al.  One-step preparation of macroporous polymer particles with multiple interconnected chambers: a candidate for trapping biomacromolecules. , 2013, Angewandte Chemie.

[30]  Xi Zhang,et al.  Combining host-guest systems with nonfouling material for the fabrication of a biosurface: toward nearly complete and reversible resistance of cytochrome c. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[31]  Hongyu Zhang,et al.  Layer-by-layer assembly: from conventional to unconventional methods. , 2007, Chemical communications.

[32]  R. Iler,et al.  Multilayers of colloidal particles , 1966 .

[33]  Federica Valentini,et al.  Magnetic tuning of the electrochemical reactivity through controlled surface orientation of catalytic nanowires. , 2006, Journal of the American Chemical Society.

[34]  Itamar Willner,et al.  Redox‐Switching of Electrorefractive, Electrochromic, and Conductivity Functions of Cu2+/Polyacrylic Acid Films Associated with Electrodes , 2002 .

[35]  Xi-Qiao Feng,et al.  Towards Understanding Why a Superhydrophobic Coating Is Needed by Water Striders , 2007 .

[36]  Xi Zhang,et al.  Unconventional layer-by-layer assembly: surface molecular imprinting and its applications. , 2012, Small.

[37]  Evgeny Katz,et al.  Electronic interfaces switchable by logically processed multiple biochemical and physiological signals , 2012 .

[38]  Xi Zhang,et al.  25th Anniversary Article: Reversible and Adaptive Functional Supramolecular Materials: “Noncovalent Interaction” Matters , 2013, Advanced materials.

[39]  S. Yagai,et al.  Recent advances in photoresponsive supramolecular self-assemblies. , 2008, Chemical Society reviews.

[40]  Jian Zhou,et al.  An integrated multifunctional nanosystem from command nanoparticles and enzymes. , 2009, Small.

[41]  I. Willner,et al.  Magnetoswitchable Charge Transport and Bioelectrocatalysis Using Maghemite‐Au Core‐Shell Nanoparticle/Polyaniline Composites , 2007 .

[42]  Shaoling Song,et al.  "On-off" switchable bioelectrocatalysis synergistically controlled by temperature and sodium sulfate concentration based on poly(N-isopropylacrylamide) films. , 2010, The journal of physical chemistry. B.

[43]  Hongyun Liu,et al.  pH-, sugar-, and temperature-sensitive electrochemical switch amplified by enzymatic reaction and controlled by logic gates based on semi-interpenetrating polymer networks. , 2012, The journal of physical chemistry. B.

[44]  K. Ariga,et al.  Layer-by-layer architectures of concanavalin A by means of electrostatic and biospecific interactions , 1995 .

[45]  I. Willner,et al.  A bifunctional monolayer electrode consisting of 4-pyridyl sulfide and photoisomerizable spiropyran: photoswitchable electrical communication between the electrode and cytochrome C , 1994 .

[46]  L. Chi,et al.  Host-guest chemistry at interface for photoswitchable bioelectrocatalysis. , 2011, Chemical communications.

[47]  E. Katz,et al.  Switchable Electrodes: How Can the System Complexity be Scaled up? , 2009 .

[48]  S. Dong,et al.  Magnetic control of bioelectrocatalytic processes based on assembled iron oxide particles , 2008 .

[49]  Evgeny Katz,et al.  Biofuel Cells with Switchable Power Output , 2010 .

[50]  Evgeny Katz,et al.  Polymer Brush-Modified Electrode with Switchable and Tunable Redox Activity for Bioelectronic Applications , 2008 .

[51]  Jianhua Zhou,et al.  Temperature-responsive polymer/carbon nanotube hybrids: smart conductive nanocomposite films for modulating the bioelectrocatalysis of NADH. , 2012, Chemistry.

[52]  Xi Zhang,et al.  Superhydrophobic surfaces: from structural control to functional application , 2008 .

[53]  Jan Halámek,et al.  Reversible gating controlled by enzymes at nanostructured interface. , 2010, Chemical communications.

[54]  Katz,et al.  Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications. , 2000, Angewandte Chemie.

[55]  Jian Zhou,et al.  Biochemically controlled bioelectrocatalytic interface. , 2008, Journal of the American Chemical Society.

[56]  D. Whitten,et al.  Preface to the Supramolecular chemistry at interfaces special issue. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[57]  I. Willner,et al.  Electronically transduced molecular mechanical and information functions on surfaces. , 2001, Accounts of chemical research.

[58]  A. S. Ito,et al.  Preparation and Characterization of the Layer-by-Layer Deposited Ultrathin Film Based on the Charge-Transfer Interaction in Organic Solvents , 1998 .

[59]  I. Willner,et al.  Integration of Photoswitchable Proteins, Photosynthetic Reaction Centers and Semiconductor/Biomolecule Hybrids with Electrode Supports for Optobioelectronic Applications , 2013, Advanced materials.

[60]  Xi Zhang,et al.  Fabrication of Reactivated Biointerface for Dual‐Controlled Reversible Immobilization of Cytochrome c , 2009, Advanced materials.

[61]  Xi Zhang,et al.  Self‐Assembled Monolayers of a Malachite Green Derivative: Surfaces with pH‐ and UV‐Responsive Wetting Properties , 2008 .

[62]  I. Willner,et al.  Switching of directions of bioelectrocatalytic currents and photocurrents at electrode surfaces by using hydrophobic magnetic nanoparticles. , 2005, Angewandte Chemie.

[63]  Gero Decher,et al.  Buildup of ultrathin multilayer films by a self‐assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces , 1991 .

[64]  Jun Yu Li,et al.  Poly(N‐isopropylacrylamide) Interfaces with Dissimilar Thermo‐responsive Behavior for Controlling Ion Permeation and Immobilization , 2007 .

[65]  Ben L Feringa,et al.  Dynamic control over cell adhesive properties using molecular-based surface engineering strategies. , 2010, Chemical Society reviews.

[66]  Yang Li,et al.  Layer-by-layer assembly for rapid fabrication of thick polymeric films. , 2012, Chemical Society reviews.

[67]  Min Wei,et al.  Temperature-controlled electrochemical switch based on layered double hydroxide/poly(N-isopropylacrylamide) ultrathin films fabricated via layer-by-layer assembly. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[68]  Lifeng Chi,et al.  A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding , 1997 .

[69]  Xiaochen Wang,et al.  Synthesis of donor–acceptor conjugated polymers based on benzo[1,2-b:4,5-b′]dithiophene and 2,1,3-benzothiadiazole via direct arylation polycondensation: towards efficient C–H activation in nonpolar solvents , 2014 .

[70]  Eugen Katz,et al.  Redoxproteinschichten auf leitenden Trgern Systeme fr bioelektronische Anwendungen , 2000 .

[71]  Feng Shi,et al.  Diving–Surfacing Cycle Within a Stimulus‐responsive Smart Device Towards Developing Functionally Cooperating Systems , 2010, Advanced materials.

[72]  A. Warsinke,et al.  Enzyme activity control by responsive redoxpolymers. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[73]  Hui Yang,et al.  Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces. , 2014, Accounts of chemical research.

[74]  Xi Zhang,et al.  Tuning surface wettability through photocontrolled reversible molecular shuttle. , 2008, Chemical communications.

[75]  Paula M Mendes,et al.  Stimuli-responsive surfaces for bio-applications. , 2008, Chemical Society reviews.

[76]  Eugen Katz,et al.  Magnetische Kontrolle elektrokatalytischer und bioelektrokatalytischer Prozesse , 2003 .

[77]  Itamar Willner,et al.  Photochemically and electrochemically triggered Au nanoparticles "sponges". , 2011, Journal of the American Chemical Society.

[78]  I. Willner,et al.  Thermo‐Switchable Charge Transport and Electrocatalysis Using Metal‐Ion‐Modified pNIPAM‐Functionalized Electrodes , 2009 .

[79]  K. MacVittie,et al.  Electrode interfaces switchable by physical and chemical signals for biosensing, biofuel, and biocomputing applications , 2013, Analytical and Bioanalytical Chemistry.

[80]  I. Willner,et al.  Photochemical switching of the phase-transition temperatures of p-NIPAM-Pt nanoparticles thermosensitive polymer composites associated with electrodes: functional electrodes for switchable electrocatalysis. , 2011, Chemistry.

[81]  Lili Liu,et al.  Graphene carrier for magneto-controllable bioelectrocatalysis. , 2014, Small.

[82]  Evgeny Katz,et al.  Switchable electrode controlled by enzyme logic network system: approaching physiologically regulated bioelectronics. , 2009, Journal of the American Chemical Society.

[83]  Zhiyi Lu,et al.  A 3D Nanoporous Ni–Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution , 2014 .

[84]  Evgeny Katz,et al.  Biofuel cell controlled by enzyme logic systems. , 2009, Journal of the American Chemical Society.

[85]  M. Rubner,et al.  Molecular-Level Processing of Conjugated Polymers. 4. Layer-by-Layer Manipulation of Polyaniline via Hydrogen-Bonding Interactions , 1997 .

[86]  Milan Mrksich,et al.  A surface chemistry approach to studying cell adhesion , 2000 .

[87]  D. Reinhoudt,et al.  Free-standing 3D supramolecular hybrid particle structures. , 2009, Angewandte Chemie.

[88]  Ximin He,et al.  Synthetic homeostatic materials with chemo-mechano-chemical self-regulation , 2012, Nature.

[89]  Jun‐Jie Zhu,et al.  Thermosensitive Behavior of Poly(N-isopropylacrylamide) and Release of Incorporated Hemoglobin , 2009 .

[90]  Jinghong Li,et al.  Temperature, ionic strength and pH induced electrochemical switching of smart polymer interfaces. , 2006, Chemical communications.