Risk‐Based Viable Population Monitoring

: We describe risk-based viable population monitoring, in which the monitoring indicator is a yearly prediction of the probability that, within a given timeframe, the population abundance will decline below a prespecified level. Common abundance-based monitoring strategies usually have low power to detect declines in threatened and endangered species and are largely reactive to declines. Comparisons of the population's estimated risk of decline over time will help determine status in a more defensible manner than current monitoring methods. Monitoring risk is a more proactive approach; critical changes in the population's status are more likely to be demonstrated before a devastating decline than with abundance-based monitoring methods. In this framework, recovery is defined not as a single evaluation of long-term viability but as maintaining low risk of decline for the next several generations. Effects of errors in risk prediction techniques are mitigated through shorter prediction intervals, setting threshold abundances near current abundance, and explicitly incorporating uncertainty in risk estimates. Viable population monitoring also intrinsically adjusts monitoring effort relative to the population's true status and exhibits considerable robustness to model misspecification. We present simulations showing that risk predictions made with a simple exponential growth model can be effective monitoring indicators for population dynamics ranging from random walk to density dependence with stable, decreasing, or increasing equilibrium. In analyses of time-series data for five species, risk-based monitoring warned of future declines and demonstrated secure status more effectively than statistical tests for trend. Resumen: Describimos el monitoreo de poblaciones viables basado en riesgos, en el que el indicador del monitoreo es la probabilidad de que la abundancia de la poblacion decline, en un periodo de tiempo determinado, por debajo de un nivel predefinido. Las estrategias comunes de monitoreo basadas en la abundancia generalmente tienen poco poder para detectar declinaciones de especies amenazadas y en peligro y son ampliamente reactivas a las declinaciones. Las comparaciones del riesgo de declinacion estimado a lo largo del tiempo ayudaran a determinar el estatus de una manera mas defendible que con los metodos de monitoreo actuales. El monitoreo de riesgo es un metodo mas preventivo; es mas probable que los cambios criticos en el estatus de una poblacion sean evidentes antes de una declinacion devastadora que con metodos de monitoreo basados en la abundancia. En este marco, la recuperacion esta definida como el mantenimiento de un bajo riesgo de declinacion para varias generaciones futuras y no solo como una evaluacion de la viabilidad a largo plazo. Los efectos de los errores de las tecnicas de prediccion de riesgos son mitigados mediante intervalos de prediccion mas cortos, el ajuste de umbrales de abundancia cerca de la abundancia actual y la incorporacion explicita de la incertidumbre en las estimaciones de riesgo. Intrinsecamente, el monitoreo de poblaciones viables tambien ajusta el esfuerzo de monitoreo en relacion con el verdadero estatus de la poblacion y muestra considerable robustez ante errores de descripcion del modelo. Presentamos simulaciones que muestran que las predicciones de riesgo derivadas de un modelo simple de crecimiento exponencial pueden ser indicadores efectivos del monitoreo de la dinamica poblacional que varian de caminatas al azar hasta denso dependencia con equilibrio estable, decreciente o creciente. En el analisis de datos de series de tiempo para cinco especies, el monitoreo basado en riesgo alerto sobre futuras declinaciones y demostro el estatus seguro mas efectivamente que las pruebas estadisticas de la tendencia.

[1]  Stephen P. Ellner,et al.  When is it meaningful to estimate an extinction probability , 2000 .

[2]  Brian Dennis,et al.  COMPLEX POPULATION DYNAMICS IN THE REAL WORLD: MODELING THE INFLUENCE OF TIME-VARYING PARAMETERS AND TIME LAGS , 1998 .

[3]  H. Caswell PROSPECTIVE AND RETROSPECTIVE PERTURBATION ANALYSES: THEIR ROLES IN CONSERVATION BIOLOGY , 2000 .

[4]  J. Ripa,et al.  The route to extinction in variable environments , 2000 .

[5]  N. Snyder,et al.  Photographic censusing of the 1982-1983 California condor population , 1985 .

[6]  W. Morris,et al.  POPULATION VIABILITY ANALYSIS IN ENDANGERED SPECIES RECOVERY PLANS: PAST USE AND FUTURE IMPROVEMENTS , 2002 .

[7]  Elizabeth E. Holmes,et al.  Efficacy of simple viability models in ecological risk assessment: Does density dependence matter? , 2004 .

[8]  C. Schultz,et al.  Using Population Viability Analysis to Develop Recovery Criteria for Endangered Insects: Case Study of the Fender's Blue Butterfly , 2003 .

[9]  Brian Dennis,et al.  ESTIMATING POPULATION TREND AND PROCESS VARIATION FOR PVA IN THE PRESENCE OF SAMPLING ERROR , 2004 .

[10]  R. Lande,et al.  Stochastic Population Dynamics in Ecology and Conservation , 2003 .

[11]  Brian Dennis,et al.  Estimation of Growth and Extinction Parameters for Endangered Species , 1991 .

[12]  A. York,et al.  Using Age Structure to Detect Impacts on Threatened Populations: a Case Study with Steller Sea Lions , 2003 .

[13]  Stephen P. Ellner,et al.  Precision of Population Viability Analysis , 2002, Conservation biology : the journal of the Society for Conservation Biology.

[14]  B. Shepard,et al.  Life History, Ecology and Population Status of Migratory Bull Trout (salvelinus confluentus) in the Flathead Lake and River System , 1989 .

[15]  T. Weaver,et al.  FLATHEAD LAKE AND RIVER SYSTEM FISHERIES STATUS REPORT , 1999 .

[16]  D. Ludwig Is it meaningful to estimate a probability of extinction , 1999 .

[17]  Hugh P. Possingham,et al.  Reliability of Relative Predictions in Population Viability Analysis , 2003 .

[18]  Katherine J. LaJeunesse Connette,et al.  Conservation Biology , 2009, The Quarterly review of biology.

[19]  Grenfell,et al.  Inverse density dependence and the Allee effect. , 1999, Trends in ecology & evolution.

[20]  Brian Dennis,et al.  ALLEE EFFECTS: POPULATION GROWTH, CRITICAL DENSITY, AND THE CHANCE OF EXTINCTION , 1989 .

[21]  P. Holgate,et al.  Matrix Population Models. , 1990 .

[22]  Leah Gerber,et al.  ARE WE RECOVERING? AN EVALUATION OF RECOVERY CRITERIA UNDER THE U.S. ENDANGERED SPECIES ACT , 2002 .

[23]  J. E. Pagel,et al.  Why Listing May Be Forever: Perspectives on Delisting under the U.S. Endangered Species Act , 2001 .

[24]  Bryce A. Maxell,et al.  A Power Analysis on the Monitoring of Bull Trout Stocks Using Redd Counts , 1999 .

[25]  R. Lande Risks of Population Extinction from Demographic and Environmental Stochasticity and Random Catastrophes , 1993, The American Naturalist.

[26]  E. E. Holmes,et al.  Estimating risks in declining populations with poor data , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. Demaster,et al.  Developing a Criterion for Delisting the Southern Sea Otter under the U.S. Endangered Species Act , 1996 .

[28]  Gary C. White,et al.  Monitoring Vertebrate Populations , 1998 .

[29]  D. Doak,et al.  Book Review: Quantitative Conservation biology: Theory and Practice of Population Viability analysis , 2004, Landscape Ecology.

[30]  F. Allendorf,et al.  Effective Population Size and Genetic Conservation Criteria for Bull Trout , 2001 .

[31]  J. Post,et al.  Density-dependent intercohort interactions and recruitment dynamics: models and a bull trout (Salvelinus confluentus) time series , 2000 .

[32]  Parviez R. Hosseini,et al.  AN ASSESSMENT OF MONITORING EFFORTS IN ENDANGERED SPECIES RECOVERY PLANS , 2002 .