Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field.

We report a study of dynamic cracking in a silicon single crystal in which the ReaxFF reactive force field is used for several thousand atoms near the crack tip, while more than 100,000 atoms are described with a nonreactive force field. ReaxFF is completely derived from quantum mechanical calculations of simple silicon systems without any empirical parameters. Our results reproduce experimental observations of fracture in silicon including changes in crack dynamics for different crack orientations.

[1]  Huajian Gao,et al.  Dynamical fracture instabilities due to local hyperelasticity at crack tips , 2006, Nature.

[2]  Toyohiro Chikyow,et al.  Combinatorial Methods and Informatics in Materials Science , 2006 .

[3]  A. V. van Duin,et al.  Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. , 2005, Journal of the American Chemical Society.

[4]  A. V. van Duin,et al.  Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. , 2005, The journal of physical chemistry. A.

[5]  A. V. van Duin,et al.  ReaxFF(MgH) reactive force field for magnesium hydride systems. , 2005, The journal of physical chemistry. A.

[6]  I. Procaccia,et al.  Crack-microcrack interactions in dynamical fracture. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Huajian Gao,et al.  Atomistic and continuum studies of stress and strain fields near a rapidly propagating crack in a harmonic lattice , 2004 .

[8]  J. Sethna,et al.  Macroscopic measure of the cohesive length scale: Fracture of notched single-crystal silicon , 2003 .

[9]  Huajian Gao,et al.  Hyperelasticity governs dynamic fracture at a critical length scale , 2003, Nature.

[10]  Huajian Gao,et al.  Atomistic and continuum studies of a suddenly stopping supersonic crack , 2003 .

[11]  A. V. van Duin,et al.  Shock waves in high-energy materials: the initial chemical events in nitramine RDX. , 2003, Physical review letters.

[12]  David M. Beazley,et al.  Automated scientific software scripting with SWIG , 2003, Future Gener. Comput. Syst..

[13]  Robert D Deegan,et al.  Wavy and rough cracks in silicon. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  A. V. Duin,et al.  ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .

[15]  M. Nastasi,et al.  Molecular dynamics simulation of brittle fracture in silicon. , 2002, Physical review letters.

[16]  Huajian Gao,et al.  Simulating materials failure by using up to one billion atoms and the world's fastest computer: Work-hardening , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  T. Wilson,et al.  Adaptive aberration correction in a confocal microscope , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  N. Chandrasekaran,et al.  Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel , 2001 .

[19]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[20]  Huajian Gao,et al.  Continuum and atomistic studies of intersonic crack propagation , 2001 .

[21]  W. Goddard,et al.  Crack propagation in a Tantalum nano-slab , 2001 .

[22]  Cramer,et al.  Energy dissipation and path instabilities in dynamic fracture of silicon single crystals , 2000, Physical review letters.

[23]  Noam Bernstein,et al.  Dynamic Fracture of Silicon: Concurrent Simulation of Quantum Electrons, Classical Atoms, and the Continuum Solid , 2000 .

[24]  Gao,et al.  How fast can cracks propagate? , 2000, Physical review letters.

[25]  F. Ebrahimi,et al.  Fracture anisotropy in silicon single crystal , 1999 .

[26]  Michael P Marder,et al.  Cracks and Atoms , 1999 .

[27]  Michael J. Mehl,et al.  Interatomic potentials for monoatomic metals from experimental data and ab initio calculations , 1999 .

[28]  Harry L. Swinney,et al.  Dynamic Fracture in Single Crystal Silicon , 1999 .

[29]  A. Wanner,et al.  Dynamic fracture of glass and single-crystalline silicon , 1999 .

[30]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[31]  Y. B. Xu,et al.  Direct evidence for microplastic fracture in single-crystal silicon at ambient temperature , 1998 .

[32]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[33]  Michael P Marder,et al.  Ideal Brittle Fracture of Silicon Studied with Molecular Dynamics , 1998 .

[34]  A. Wanner,et al.  Crack Velocities during Dynamic Fracture of Glass and Single Crystalline Silicon , 1997 .

[35]  David M. Beazley,et al.  Computational steering. Software systems and strategies , 1997 .

[36]  Xiaopeng Xu,et al.  A molecular dynamics investigation of rapid fracture mechanics , 1997 .

[37]  E. Kaxiras,et al.  Environment-dependent interatomic potential for bulk silicon , 1997, cond-mat/9704137.

[38]  Huajian Gao,et al.  A theory of local limiting speed in dynamic fracture , 1996 .

[39]  J. w.,et al.  APPROVED FOR PUBLIC RELEASE , 1996 .

[40]  Brodbeck,et al.  Instability dynamics of fracture: A computer simulation investigation. , 1994, Physical review letters.

[41]  Sidney Yip,et al.  A molecular-dynamics simulation of crack-tip extension: The brittle-to-ductile transition , 1994 .

[42]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[43]  Swinney,et al.  Instability in the propagation of fast cracks. , 1992, Physical review. B, Condensed matter.

[44]  Swinney,et al.  Instability in dynamic fracture. , 1991, Physical review letters.

[45]  K. W. Neale,et al.  Dynamic fracture mechanics , 1991 .

[46]  L. B. Freund,et al.  Dynamic Fracture Mechanics: Index , 1990 .

[47]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[48]  R. A. Johnson,et al.  Simple embedded atom method model for fcc and hcp metals , 1988 .

[49]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[50]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[51]  Sidney Yip,et al.  Molecular dynamics simulation of crack tip processes in alpha‐iron and copper , 1983 .

[52]  S. Papson,et al.  “Model” , 1981 .