Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses
暂无分享,去创建一个
J. Wunderlich | T. Jungwirth | R. Campion | F. Maccherozzi | S. Dhesi | P. Němec | F. Krizek | K. Olejník | V. Novák | P. Gambardella | X. Marti | O. Amin | P. Wadley | K. Edmonds | Jorg Wunderlich | M. Surýnek | Z. Kašpar | T. Jungwirth | P. Nvemec | J. Zubáč | M. S. Wörnle | S. Reimers | Kamil Olejn'ik | M. S. Wornle | Zdenvek Kavspar | Miloslav Sur'ynek | Jan Zub'avc | V'it Nov'ak
[1] P. Khalili Amiri,et al. Electrical manipulation of the magnetic order in antiferromagnetic PtMn pillars , 2020 .
[2] J. Greer,et al. Non-magnetic origin of spin Hall magnetoresistance-like signals in Pt films and epitaxial NiO/Pt bilayers , 2020 .
[3] A. Rushforth,et al. Spin flop and crystalline anisotropic magnetoresistance in CuMnAs , 2019, Physical Review B.
[4] T. Jungwirth,et al. Molecular beam epitaxy of CuMnAs , 2019, Physical Review Materials.
[5] Jinwoo Hwang,et al. Electrical Switching of Tristate Antiferromagnetic Néel Order in α-Fe_{2}O_{3} Epitaxial Films. , 2019, Physical review letters.
[6] T. Jungwirth,et al. Current-induced fragmentation of antiferromagnetic domains , 2019, 1912.05287.
[7] B. Zink. The Heat in Antiferromagnetic Switching , 2019 .
[8] S. Huang,et al. Absence of Evidence of Electrical Switching of the Antiferromagnetic Néel Vector. , 2019, Physical review letters.
[9] Luqiao Liu,et al. Quantitative Study on Current-Induced Effect in an Antiferromagnet Insulator/Pt Bilayer Film. , 2019, Physical review letters.
[10] H. Ohno,et al. Artificial Neuron and Synapse Realized in an Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin–Orbit Torque Switching , 2019, Advanced materials.
[11] A. Kimel,et al. Writing magnetic memory with ultrashort light pulses , 2019, Nature Reviews Materials.
[12] E. Saitoh,et al. Mechanism of Néel Order Switching in Antiferromagnetic Thin Films Revealed by Magnetotransport and Direct Imaging. , 2018, Physical review letters.
[13] H. Ohno,et al. Spin transport and spin torque in antiferromagnetic devices , 2018 .
[14] J. Sinova. Topological Antiferromagnetic Spintronics , 2018 .
[15] C. Felser,et al. The multiple directions of antiferromagnetic spintronics , 2018 .
[16] A. Brataas,et al. Antiferromagnetic spin textures and dynamics , 2018 .
[17] Binghai Yan,et al. Topological antiferromagnetic spintronics , 2018 .
[18] Tobias Kampfrath,et al. Terahertz electrical writing speed in an antiferromagnetic memory , 2018, Science Advances.
[19] J. Wunderlich,et al. Current polarity-dependent manipulation of antiferromagnetic domains , 2017, Nature Nanotechnology.
[20] I. Turek,et al. Physical properties of the tetragonal CuMnAs: A first-principles study , 2017, 1708.06916.
[21] I. Turek,et al. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance , 2017, Nature Communications.
[22] M. Fiebig,et al. Antiferromagnetic opto-spintronics , 2017, 1705.10600.
[23] Jörg Raabe,et al. Spatially and time-resolved magnetization dynamics driven by spin-orbit torques. , 2017, Nature nanotechnology.
[24] T. Jungwirth,et al. Imaging Current-Induced Switching of Antiferromagnetic Domains in CuMnAs. , 2016, Physical review letters.
[25] A. Manchon,et al. Antiferromagnetic spintronics , 2016, 1606.04284.
[26] J. Wunderlich,et al. Antiferromagnetic spintronics. , 2015, Nature nanotechnology.
[27] A. Rushforth,et al. Electrical switching of an antiferromagnet , 2015, Science.
[28] T. Higo,et al. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2015, Nature.
[29] J. Sinova,et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. , 2014, Physical review letters.
[30] Q. Niu,et al. Anomalous Hall effect arising from noncollinear antiferromagnetism. , 2013, Physical review letters.
[31] M. Rudneva,et al. In situ TEM and STEM studies of reversible electromigration in thin palladium–platinum bridges , 2013, Nanotechnology.
[32] C. T. Foxon,et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs , 2013, Nature Communications.
[33] Changyoung Kim,et al. Orbital-angular-momentum based origin of Rashba-type surface band splitting. , 2011, Physical review letters.
[34] J. Wunderlich,et al. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics , 2010, 1002.2151.
[35] A. Fert,et al. The emergence of spin electronics in data storage. , 2007, Nature materials.
[36] J. C. Phillips,et al. Axiomatic theories of ideal stretched exponential relaxation (SER) , 2005, cond-mat/0505456.
[37] Wulfram Gerstner,et al. SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .
[38] Thompson,et al. Giant Magnetoresistive Effects in a Single Element Magnetic Thin Film. , 1996, Physical review letters.
[39] J. Daughton. Magnetoresistive memory technology , 1992 .
[40] M. Crayton,et al. Room temperature. , 1980, Science.
[41] Louis N�el. Magnetism and Local Molecular Field , 1971, Science.
[42] A. Aharoni. Effect of a Magnetic Field on the Superparamagnetic Relaxation Time , 1969 .
[43] Yin-yuan Li. Domain Walls in Antiferromagnets and the Weak Ferromagnetism of α-Fe 2 O 3 , 1956 .