A Discrete Model of Collective Marching on Rings

[1]  Alfred M. Bruckstein,et al.  COME TOGETHER: Multi-Agent Geometric Consensus (Gathering, Rendezvous, Clustering, Aggregation) , 2019, ArXiv.

[2]  Katja Ried,et al.  Modelling collective motion based on the principle of agency: General framework and the case of marching locusts , 2017, PloS one.

[3]  Alfred M. Bruckstein,et al.  Probabilistic Pursuits on Graphs , 2017, Theor. Comput. Sci..

[4]  Gang Kou,et al.  A survey on the fusion process in opinion dynamics , 2018, Inf. Fusion.

[5]  Bernard Chazelle,et al.  Toward a Theory of Markov Influence Systems and their Renormalization , 2018, ITCS.

[6]  Alex Pentland,et al.  Introduction to Swarm Search , 2018 .

[7]  A. K. Chandra,et al.  Diffusion Controlled Model of Opinion Dynamics , 2017 .

[8]  Guy Amichay,et al.  Distributed under Creative Commons Cc-by 4.0 the Effect of Changing Topography on the Coordinated Marching of Locust Nymphs , 2022 .

[9]  Alfred M. Bruckstein,et al.  Chase Your Farthest Neighbour , 2016, DARS.

[10]  Amir Ayali,et al.  Locust Collective Motion and Its Modeling , 2015, PLoS Comput. Biol..

[11]  Masashi Shiraishi,et al.  Collective Patterns of Swarm Dynamics and the Lyapunov Analysis of Individual Behaviors , 2015 .

[12]  Anders Martinsson,et al.  The Hegselmann-Krause dynamics on the circle converge , 2014, ArXiv.

[13]  Guy Theraulaz,et al.  Do Ants Need to Estimate the Geometrical Properties of Trail Bifurcations to Find an Efficient Route? A Swarm Robotics Test Bed , 2013, PLoS Comput. Biol..

[14]  Bernard Chazelle,et al.  Natural algorithms and influence systems , 2012, CACM.

[15]  T. Chou,et al.  Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport , 2011, 1110.1783.

[16]  Natalie Fridman,et al.  Modeling pedestrian crowd behavior based on a cognitive model of social comparison theory , 2010, Comput. Math. Organ. Theory.

[17]  G. Lawler Random Walk and the Heat Equation , 2010 .

[18]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[19]  H. Chaté,et al.  Modeling collective motion: variations on the Vicsek model , 2008 .

[20]  T. Kriecherbauer,et al.  A pedestrian's view on interacting particle systems, KPZ universality and random matrices , 2008, 0803.2796.

[21]  Jorge Cortés,et al.  Distributed algorithms for reaching consensus on general functions , 2008, Autom..

[22]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[23]  John N. Tsitsiklis,et al.  Introduction to Probability , 2002 .

[24]  T. Vicsek,et al.  Collective motion of organisms in three dimensions , 1999, physics/9902021.

[25]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[26]  Alfred M. Bruckstein,et al.  Why the ant trails look so straight and nice , 1993 .

[27]  T. Lindvall Lectures on the Coupling Method , 1992 .

[28]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[29]  R. Epstein The Theory of Gambling and Statistical Logic , 1968 .

[30]  Solomon Lefschetz,et al.  Stability by Liapunov's Direct Method With Applications , 1962 .