Numerical simulation of parachute inflation: A methodological review

The parachute inflation process involves fluid–structure interaction problems posing several mathematical and engineering challenges, e.g. accurate aerodynamics calculations for bluff-body geometries involving with moving boundary, appropriate structural models in predicting the behavior of canopy, and realization of the coupling between the fluid and structure. These challenges attract the attention of scholars worldwide, and considerable achievements have been obtained in applying numerical methods and simulations to design multifarious parachutes. In this paper, the authors highlight the advances in the following fields: the methods suitable for time-dependent flow around bluff-body geometries, the accurate structural models in consideration of the under-constrained and no-compression nature of the canopy, and the advantages and disadvantages of different coupling algorithms in terms of numerical stability and computational economics. Moreover, in order to simulate the parachute inflation more realistically, we focus on accurate representation of three physical phenomena, as follows: an appropriate model of the flow through porous media, an accurate treatment of the wrinkling phenomenon of the canopy, and a consistent representation of the impact-contact problem associated with the inflation process. Finally, based on a review of existing literature, we offer recommendations for future research on the application of numerical methods for simulating the inflation process.

[1]  A. Y. Cheer,et al.  NUMERICAL STUDY OF INCOMPRESSIBLE SLIGHTLY VISCOUS FLOW PAST BLUNT BODIES AND AIRFOILS - eScholarship , 1983 .

[2]  C. W. Peterson The Fluid Dynamics of Parachute Inflation , 1996 .

[3]  T. Laursen Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .

[4]  J. W. Leonard,et al.  Structural Modeling of Parachute Dynamics , 2000 .

[5]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[6]  P. Degond,et al.  The weighted particle method for convection-diffusion equations , 1989 .

[7]  Jonathan Weiss,et al.  Preconditioning Applied to Variable and Constant Density Time-Accurate Flows on Unstructured Meshes , 1994 .

[8]  Richard Benney,et al.  Computational methods for modeling parachute systems , 2003, Comput. Sci. Eng..

[9]  Application of mosaic-skeleton approximations in the simulation of three-dimensional vortex flows by vortex segments , 2010 .

[10]  J. W. Leonard,et al.  Finite element analysis of membrane wrinkling , 2001 .

[11]  C. Farhat,et al.  Torsional springs for two-dimensional dynamic unstructured fluid meshes , 1998 .

[12]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[13]  Jubaraj Sahu,et al.  PREDICTION OF TERMINAL DESCENT CHARACTERISTICS OF PARACHUTE CLUSTERS USING CFD , 1997 .

[14]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[15]  D. Summers Complementary modes of impulse generation for flow past a three-dimensional obstacle , 2006 .

[16]  Kiyoshi Maruyama A procedure to determine intersections between polyhedral objects , 2004, International Journal of Computer & Information Sciences.

[17]  Tayfun E. Tezduyar,et al.  Fluid-structure interaction modeling of complex parachute designs with the space-time finite element techniques , 2007 .

[18]  D. Cockrell,et al.  A discrete free vortex method of analysis for inviscid axisymmetric flows around parachute canopies , 1991 .

[19]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[20]  Xijun Yu,et al.  Two-dimensional lattice Boltzmann model for compressible flows with high Mach number , 2008, 0801.4169.

[21]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[22]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[23]  Yan Li,et al.  Simulation of parachute FSI using the front tracking method , 2013 .

[24]  J. C. Simo,et al.  A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems , 1993 .

[25]  Annalisa Quaini,et al.  Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement , 2012, J. Comput. Phys..

[26]  L. Eriksson Generation of boundary-conforming grids around wing-body configurations using transfinite interpolation , 1982 .

[27]  Carlos E. S. Cesnik,et al.  EVALUATION OF SOME DATA TRANSFER ALGORITHMS FOR NONCONTIGUOUS MESHES , 2000 .

[28]  Suncica Canic,et al.  Stability of the kinematically coupled \beta-scheme for fluid-structure interaction problems in hemodynamics , 2012 .

[29]  Manuchehr Soleimani,et al.  Modeling of Yarn Cross-Section in Plain Woven Fabric , 2009 .

[30]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes , 2008 .

[31]  Vance L. Behr,et al.  An Overview of the Development of a Vortex Based Inflation Code for Parachute Simulation (VIPAR) , 1999 .

[32]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[33]  Ted Belytschko,et al.  Arbitrary Lagrangian-Eulerian Petrov-Galerkin finite elements for nonlinear continua , 1988 .

[34]  Turgut Sarpkaya,et al.  Methods of analysis for flow around parachute canopies , 1991 .

[35]  Gene R. Cooper,et al.  3-D parachute descent analysis using coupled CFD and structural codes , 1995 .

[36]  A. Leonard,et al.  Numerical simulation of interacting three-dimensional vortex filaments , 1975 .

[37]  Miguel A. Fernández,et al.  ACCELERATION OF A FIXED POINT ALGORITHM FOR FLUID-STRUCTURE INTERACTION USING TRANSPIRATION CONDITIONS , 2003 .

[38]  A. J. Gil,et al.  Finite element analysis of partly wrinkled reinforced prestressed membranes , 2007 .

[39]  W. M. Mullins,et al.  Stress analysis of ribbon parachutes , 1975 .

[40]  V. Brummelen,et al.  A finite-element/boundary-element method for large-displacement fluid-structure interaction with potential flow , 2013 .

[41]  J. Y. Tu,et al.  Numerical Stability of Partitioned Approach in Fluid-Structure Interaction for a Deformable Thin-Walled Vessel , 2013, Comput. Math. Methods Medicine.

[42]  Nicolas Aquelet,et al.  Porous Euler-Lagrange Coupling : Application to Parachute Dynamics , 2006 .

[43]  Cwj Cees Oomens,et al.  The Wrinkling of Thin Membranes: Part I—Theory , 1987 .

[44]  Cass T. Miller,et al.  An evaluation of lattice Boltzmann schemes for porous medium flow simulation , 2006 .

[45]  Mikko Lyly,et al.  A method for partitioned fluid-structure interaction computation of flow in arteries. , 2008, Medical engineering & physics.

[46]  Michael L. Accorsi,et al.  Parachute fluid-structure interactions: 3-D computation , 2000 .

[47]  C. W. Hirt,et al.  SALE: a simplified ALE computer program for fluid flow at all speeds , 1980 .

[48]  A. Chorin Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.

[49]  Charles S. Peskin,et al.  2-D Parachute Simulation by the Immersed Boundary Method , 2006, SIAM J. Sci. Comput..

[50]  Aleksander S Popel,et al.  An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows , 2007, Physical biology.

[51]  A.M.S. Martin,et al.  Mars Science Laboratory: Entry, Descent, and Landing System Performance , 2007, 2007 IEEE Aerospace Conference.

[52]  Shaker A. Meguid,et al.  Advances in computational contact mechanics , 2008 .

[53]  Valdés Vázquez,et al.  Nonlinear Analysis of Orthotropic Membrane and Shell Structures Including Fluid-Structure Interaction. , 2007 .

[54]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[55]  Patrick Jenny,et al.  Adaptive Multiscale Finite-Volume Method for Multiphase Flow and Transport in Porous Media , 2005, Multiscale Model. Simul..

[56]  Yihua Cao,et al.  Numerical simulation of the flow field around parachute during terminal descent , 2007 .

[57]  H. Parisch A consistent tangent stiffness matrix for three‐dimensional non‐linear contact analysis , 1989 .

[58]  A. Leonard Computing Three-Dimensional Incompressible Flows with Vortex Elements , 1985 .

[59]  Ronald H. W. Hoppe,et al.  An adaptive Newton continuation strategy for the fully implicit finite element immersed boundary method , 2012, J. Comput. Phys..

[60]  Ning Qin,et al.  Fast dynamic grid deformation based on Delaunay graph mapping , 2006 .

[61]  P. Wriggers Nonlinear finite element analysis of solids and structures , 1998 .

[62]  Hiroshi Higuchi,et al.  Flow past two-dimensional ribbon parachute models , 1988 .

[63]  N. Aquelet,et al.  Euler-Lagrange coupling for porous parachute canopy analysis , 2007 .

[64]  Grégoire Winckelmans,et al.  Improved vortex methods for three-dimensional flows , 1988 .

[65]  Y. T. Chew,et al.  Application of multi-block approach in the immersed boundary-lattice Boltzmann method for viscous fluid flows , 2006, J. Comput. Phys..

[66]  Christopher Jenkins,et al.  Nonlinear Dynamic Response of Membranes: State of the Art , 1991 .

[67]  A. Bejan,et al.  Convection in Porous Media , 1992 .

[68]  Richard Benney,et al.  Computational fluid-structure interaction model for parachute inflation , 1996 .

[69]  Mohammad J. Izadi,et al.  3D Numerical Simulation of a Parachute With Two Air Vented Canopies in a Top-to-Top Formation , 2008 .

[70]  S. M. H. Karimian,et al.  Pressure-based control-volume finite element method for flow at all speeds , 1995 .

[71]  Howard H. Hu,et al.  Direct numerical simulations of fluid-solid systems using the arbitrary Langrangian-Eulerian technique , 2001 .

[72]  John Sheridan,et al.  Flow field and topological analysis of hemispherical parachute in low angles of attack , 2010 .

[73]  H. Wendland,et al.  Multivariate interpolation for fluid-structure-interaction problems using radial basis functions , 2001 .

[74]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[75]  Miguel R. Visbal,et al.  Accuracy and Coupling Issues of Aeroelastic Navier-Stokes Solutions on Deforming Meshes , 1997 .

[76]  Duong Viet Dung,et al.  Core Spreading Vortex Method for Simulating 3D Flow around Bluff Bodies , 2014 .

[77]  Jorge Ambrósio,et al.  On the contact detection for contact-impact analysis in multibody systems , 2010 .

[78]  Georges-Henri Cottet,et al.  Advances in direct numerical simulations of 3D wall-bounded flows by Vortex-in-Cell methods , 2004 .

[79]  C. Farhat,et al.  Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems , 2000 .

[80]  Tayfun E. Tezduyar,et al.  CFD methods for three-dimensional computation of complex flow problems , 1999 .

[81]  C. R. Ethier,et al.  A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains , 2005 .

[82]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[83]  P. C. Klimas,et al.  Inflating parachute canopy differential pressures , 1979 .

[84]  Mark O. Neal,et al.  Contact‐impact by the pinball algorithm with penalty and Lagrangian methods , 1991 .

[85]  Christopher Jenkins,et al.  Nonlinear Dynamic Response of Membranes: State of the Art - Update , 1996 .

[86]  G. Winckelmans,et al.  Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry , 2000 .

[87]  Andrew W. Woods,et al.  An arbitrary Lagrangian Eulerian method for moving-boundary problems and its application to jumping over water , 2005 .

[88]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[89]  T. Sarpkaya Computational Methods With Vortices—The 1988 Freeman Scholar Lecture , 1989 .

[90]  J. H. Strickland,et al.  Prediction Method for Unsteady Axisymmetric Flow over Parachutes , 1994 .

[91]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[92]  Georges-Henri Cottet,et al.  Blending Finite-Difference and Vortex Methods for Incompressible Flow Computations , 2000, SIAM J. Sci. Comput..

[93]  W. D. Sundberg New Solution Method for Steady-State Canopy Structural Loads , 1986 .

[94]  Mark A. Ganter,et al.  Dynamic collision detection using space partitioning , 1993, DAC 1990.

[95]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[96]  Susanne C. Brenner,et al.  The condition number of the Schur complement in domain decomposition , 1999, Numerische Mathematik.

[97]  Hester Bijl,et al.  Review of coupling methods for non-matching meshes , 2007 .

[98]  Rainald Löhner,et al.  Conservative load projection and tracking for fluid-structure problems , 1996 .

[99]  Michael S. Warren,et al.  Skeletons from the treecode closet , 1994 .

[100]  H. Johari,et al.  The flow in the near wake of an inflating parachute canopy , 2001 .

[101]  Georges-Henri Cottet,et al.  Artificial Viscosity Models for Vortex and Particle Methods , 1996 .

[102]  Charles S. Peskin,et al.  3-D Parachute simulation by the immersed boundary method , 2009 .

[103]  H. Bijl,et al.  Mesh deformation based on radial basis function interpolation , 2007 .

[104]  K. Kuwahara,et al.  Computation of flow past a parachute by a three-dimensional vortex method , 1986 .

[105]  D. Wilcox Turbulence modeling for CFD , 1993 .

[106]  Jan Vierendeels,et al.  Implicit Coupling of Partitioned Fluid-Structure Interaction Solvers using Reduced-Order Models , 2005 .

[107]  Renato Vitaliani,et al.  Simulation of light‐weight membrane structures by wrinkling model , 2005 .

[108]  Hui Zhang,et al.  Immersed boundary method and lattice Boltzmann method coupled FSI simulation of mitral leaflet flow , 2010 .

[109]  Robert LaFarge,et al.  A novel CFD/structural analysis of a cross parachute , 1994 .

[110]  John Sheridan,et al.  Numerical simulation of fluid-structure interaction in the opening process of conical parachute , 2009 .

[111]  Benjamin Tutt,et al.  The Use of LS-DYNA to Assess the Performance of Airborne Systems North America Candidate ATPS Main Parachutes , 2005 .

[112]  J. Xia,et al.  Simulation of 3D parachute fluid–structure interaction based on nonlinear finite element method and preconditioning finite volume method , 2014 .

[113]  Kazuhiro Nakahashi,et al.  Low speed preconditioning and LU-SGS scheme for 3-D viscous flow computations on unstructured grids , 1998 .

[114]  T. Tezduyar,et al.  Space-time finite element computation of compressible flows involving moving boundaries and interfaces☆ , 1993 .

[115]  Chang Shu,et al.  A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder , 2007, J. Comput. Phys..

[116]  Tayfun E. Tezduyar,et al.  Modeling of fluid–structure interactions with the space–time finite elements: contact problems , 2008 .

[117]  A. Guha,et al.  A Method of Modeling Fabric Shear using Finite Element Analysis , 2015 .

[118]  Rainald Löhner,et al.  Extension of Harten-Lax-van Leer Scheme for Flows at All Speeds. , 2005 .

[119]  Miguel Angel Fernández,et al.  Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit , 2011 .

[120]  J. Batina UNSTEADY EULER ALGORITHM WITH UNSTRUCTURED DYNAMIC MESH FOR COMPLEX – AIRCRAFT AERODYNAMIC ANALYSIS , 1991 .

[121]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[122]  Michael L. Accorsi,et al.  Analysis of geometrically nonlinear anisotropic membranes: theory and verification , 2005 .

[123]  H. Mccoy,et al.  Axisymmetric vortex lattice method applied to parachute shapes , 1986 .

[124]  Yoo-Chul Kim,et al.  Vortex‐in‐cell method combined with a boundary element method for incompressible viscous flow analysis , 2012 .

[125]  Charles S. Peskin,et al.  Stability and Instability in the Computation of Flows with Moving Immersed Boundaries: A Comparison of Three Methods , 1992, SIAM J. Sci. Comput..

[126]  Zhenlong Wu,et al.  Numerical simulation of parafoil inflation via a Robin–Neumann transmission-based approach , 2018 .

[127]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[128]  B. W. Roberts Aerodynamic Inflation of Shell Type, Parachute Structures , 1974 .

[129]  Gregory F. Homicz,et al.  On the Development of a Gridless Inflation Code for Parachute Simulations , 2000 .

[130]  C. Lacroix,et al.  SINPA, a full 3D fluid-structure software package for parachute simulation , 1997 .

[131]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[132]  Theo W Knacke,et al.  Parachute recovery systems : design manual , 1991 .

[133]  M. Unser,et al.  Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.

[134]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[135]  J. Sheridan,et al.  Numerical simulation of parachute Fluid-Structure Interaction in terminal descent , 2012 .

[136]  Georges-Henri Cottet,et al.  A multiresolution remeshed Vortex-In-Cell algorithm using patches , 2011, J. Comput. Phys..

[137]  Wolfgang A. Wall,et al.  Vector Extrapolation for Strong Coupling Fluid-Structure Interaction Solvers , 2009 .

[138]  Chen,et al.  Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[139]  James Nelsen,et al.  Computational fluid dynamic studies of a solid and ribbon 12-gore parachute canopy in subsonic and supersonic flow , 1995 .

[140]  Alexander Konyukhov,et al.  Computational Contact Mechanics , 2013 .

[141]  A Lagrangian-Eulerian Finite-Volume Method for Simulating Free Surface Flows of Granular Avalanches , 2003 .

[142]  Zhang Weiwe Research Progress on Mesh Deformation Method in Computational Aeroelasticity , 2014 .

[143]  Alexandre J. Chorin Vortex Sheet Approximation of Boundary Layers , 1989 .

[144]  W. Schur,et al.  Large deflection analysis of pneumatic envelopes using a penalty parameter modified material model , 2001 .

[146]  Luca Heltai,et al.  On the CFL condition for the finite element immersed boundary method , 2007 .

[147]  Karl Kunisch,et al.  Three Control Methods for Time-Dependent Fluid Flow , 2000 .

[148]  A. Curnier,et al.  A finite element method for a class of contact-impact problems , 1976 .

[149]  A. Leonard Vortex methods for flow simulation , 1980 .

[150]  Benjamin Tutt,et al.  The Use of LS-DYNA to Simulate the Inflation of a Parachute Canopy , 2005 .