Deterministic asynchronous automata for infinite traces

This paper shows the equivalence between the family of recognizable languages over infinite traces and the family of languages which are recognized by deterministic asynchronous cellular Muller automata. We thus give a proper generalization of McNaughton's Theorem from infinite words to infinite traces. Thereby we solve one of the main open problems in this field. As a special case we obtain that every closed (w.r.t. the independence relation) word language is accepted by someI-diamond deterministic Muller automaton.

[1]  Yves Métivier,et al.  Asynchronous Mappings and Asynchronous Cellular Automata , 1993, Inf. Comput..

[2]  André Arnold,et al.  A Syntactic Congruence for Rational omega-Language , 1985, Theor. Comput. Sci..

[3]  Wolfgang Reisig,et al.  Petri Nets: Applications and Relationships to Other Models of Concurrency , 1986, Lecture Notes in Computer Science.

[4]  Volker Diekert On the concatenation of infinite traces (extended abstract) , 1991 .

[5]  Marta Z. Kwiatkowska,et al.  A Metric for Traces , 1990, Inf. Process. Lett..

[6]  Paul Gastin,et al.  Asynchronous Cellular Automata for Infinite Traces , 1992, ICALP.

[7]  Wieslaw Zielonka Safe Executions of Recognizable Trace Languages by Asynchronous Automata , 1989, Logic at Botik.

[8]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[9]  Robert Cori,et al.  Automates et Commutations Partielles , 1985, RAIRO Theor. Informatics Appl..

[10]  Paul Gastin,et al.  Recognizable and Rational Languages of Finite and Infinite Traces , 1991, STACS.

[11]  Paul Gastin,et al.  A Kleene Theorem for Infinite Trace Languages , 1991, ICALP.

[12]  Wieslaw Zielonka,et al.  Notes on Finite Asynchronous Automata , 1987, RAIRO Theor. Informatics Appl..

[13]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[14]  Paul Gatin Recognizable and rational languages of finite an infinite traces , 1991 .

[15]  A. Mazurkiewicz Concurrent Program Schemes and their Interpretations , 1977 .

[16]  Antoni W. Mazurkiewicz,et al.  Trace Theory , 1986, Advances in Petri Nets.

[17]  Volker Diekert On the Concatenation of Infinite Traces , 1991, STACS.

[18]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[19]  Volker Diekert,et al.  Combinatorics on Traces , 1990, Lecture Notes in Computer Science.

[20]  Paul Gastin,et al.  The Poset of Infinitary Traces , 1993, Theor. Comput. Sci..