Controlled electrochemical charge injection to maximize the energy density of supercapacitors.

Maximized energy density: Controlled electrochemical charge injection (ECI) can be used for maximizing the energy density of supercapacitors (SCs). The electrode potential is tuned by the surface chemical structure of the electrode material to increase both the working voltage and the specific capacity of the SCs. As a result, the energy density of carbon SCs is significantly improved close to the level of lithium-ion batteries (see picture).

[1]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[2]  François Béguin,et al.  Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor , 2011 .

[3]  X. Zhao,et al.  On the configuration of supercapacitors for maximizing electrochemical performance. , 2012, ChemSusChem.

[4]  R. Ruoff,et al.  Activated graphene as a cathode material for Li-ion hybrid supercapacitors. , 2012, Physical chemistry chemical physics : PCCP.

[5]  B. Jang,et al.  Graphene surface-enabled lithium ion-exchanging cells: next-generation high-power energy storage devices. , 2011, Nano letters.

[6]  F. Béguin,et al.  High-energy density graphite/AC capacitor in organic electrolyte , 2008 .

[7]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[8]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[9]  J. Ferraris,et al.  Electrochemically Tuned Properties for Electrolyte‐Free Carbon Nanotube Sheets , 2009 .

[10]  Haijiao Zhang,et al.  Li Storage Properties of Disordered Graphene Nanosheets , 2009 .

[11]  François Béguin,et al.  High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte , 2010 .

[12]  Masayuki Morita,et al.  An Advanced Hybrid Electrochemical Capacitor That Uses a Wide Potential Range at the Positive Electrode , 2006 .

[13]  K. Naoi,et al.  ‘Nanohybrid Capacitor’: The Next Generation Electrochemical Capacitors , 2010 .

[14]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[15]  Shuo Chen,et al.  High-power lithium batteries from functionalized carbon-nanotube electrodes. , 2010, Nature nanotechnology.

[16]  A. Balducci,et al.  The Influence of Pore Structure and Surface Groups on the Performance of High Voltage Electrochemical Double Layer Capacitors Containing Adiponitrile-Based Electrolyte , 2012 .

[17]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[18]  François Béguin,et al.  A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte , 2010 .

[19]  Ran Liu,et al.  Heterogeneous nanostructured electrode materials for electrochemical energy storage. , 2011, Chemical communications.

[20]  Andrew Cruden,et al.  Energy storage in electrochemical capacitors: designing functional materials to improve performance , 2010 .

[21]  Ju-tang Sun,et al.  How many lithium ions can be inserted onto fused C6 aromatic ring systems? , 2012, Angewandte Chemie.

[22]  G. Lu,et al.  3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. , 2008, Angewandte Chemie.

[23]  Feng Li,et al.  Graphene–Cellulose Paper Flexible Supercapacitors , 2011 .

[24]  E. Rideal,et al.  Fuel Cells , 1958, Nature.

[25]  François Béguin,et al.  Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations , 2005 .