High-Heat-Flux Testing of Helium-Cooled Heat Exchangers for Fusion Applications
暂无分享,去创建一个
High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping requirements. The Creare sample was tested to a maximum absorbed heat flux of 5.8 MW/m{sup 2}. The second used low pressure drops and high mass flow rates to achieve good heat removal. The GA specimen was tested to a maximum absorbed heat flux of 9 MW/m{sup 2} while maintaining a surface temperature below 400{degree}C. A second experiment resulted in a maximum absorbed heat flux of 34 MW/m{sup 2} and surface temperatures near 533{degree}C. The third specimen was a DSCu, axial flow, helium-cooled divertor mock-up filled with a porous metal wick which effectively increases the available heat transfer area. Low mass flow and high pressure drop operation at 4.0 MPa were characteristic of this divertor module. It survived a maximum absorbed heat flux of 16 MW/m{sup 2} and reached a surface temperature of 740{degree}C. Thermacore also manufactured a follow-on, dual channelmore » porous metal-type heat exchanger, which survived a maximum absorbed heat flux of 14 MW/m{sup 2} and reached a maximum surface temperature of 690{degree}C. 11refs., 20 figs., 3 tabs.« less
[1] Michael G. Izenson,et al. Normal Flow Heat Exchanger for Divertor Panel Cooling , 1992 .
[2] B. I. Shamasundar,et al. Chapter 5, Part 1 – Helium Cooled Systems. High Temperature Gas-Cooled Reactor (HTGR) , 1981 .
[3] M. El-Wakil,et al. Nuclear Heat Transport , 1971 .