Modelling the global ocean tides: modern insights from FES2004

[1]  Daniel R. Lynch,et al.  Resolution issues in numerical models of oceanic and coastal circulation , 2007 .

[2]  O. Andersen,et al.  Mapping nonlinear shallow-water tides: a look at the past and future , 2006 .

[3]  B. Arbic Atmospheric forcing of the oceanic semidiurnal tide , 2005 .

[4]  Etude des ondes de marée sur les plateaux continentaux , 2005 .

[5]  R. Hallberg,et al.  Internal wave generation in a global baroclinic tide model , 2004 .

[6]  Gary D. Egbert,et al.  The Global S1 Tide , 2004 .

[7]  Gary D. Egbert,et al.  Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum , 2004 .

[8]  Florent Lyard,et al.  On the statistical stability of the M2 barotropic and baroclinic tidal characteristics from along‐track TOPEX/Poseidon satellite altimetry analysis , 2004 .

[9]  R. Ray,et al.  Barometric Tides from ECMWF Operational Analyses , 2003 .

[10]  Gary D. Egbert,et al.  Deviation of Long-Period Tides from Equilibrium: Kinematics and Geostrophy , 2003 .

[11]  A. Weaver,et al.  Tidally driven mixing in a numerical model of the ocean general circulation , 2003 .

[12]  Florent Lyard,et al.  Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing ‐ comparisons with observations , 2003 .

[13]  L. Carrère Etude et modélisation de la réponse haute fréquence de l'océan global aux forçages météorologiques , 2003 .

[14]  C. Provost,et al.  FES99: A Global Tide Finite Element Solution Assimilating Tide Gauge and Altimetric Information , 2002 .

[15]  S. G. L. Smith,et al.  Conversion of the Barotropic Tide , 2002 .

[16]  Gary D. Egbert,et al.  Estimates of M2 Tidal Energy Dissipation from TOPEX/Poseidon Altimeter Data , 2001 .

[17]  L. St. Laurent,et al.  Parameterizing tidal dissipation over rough topography , 2001 .

[18]  C. Provost,et al.  An Analysis of the Tidal Signal in the WOCE Sea Level Dataset , 2001 .

[19]  G. D. Egbert,et al.  Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data , 2000, Nature.

[20]  F. Lefevre Modelisation des marees oceaniques a l'echelle globale : assimilation de donnees in situ et altimetriques , 2000 .

[21]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[22]  F. Lyard,et al.  Data Assimilation in a Wave Equation , 1999 .

[23]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[24]  C. Provost,et al.  A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set , 1998 .

[25]  M. E. Parke,et al.  Accuracy assessment of recent ocean tide models , 1997 .

[26]  Florent Lyard,et al.  Energetics of the M2 barotropic ocean tides: an estimate of bottom friction dissipation from a hydrodynamic model , 1997 .

[27]  G. Mitchum,et al.  Surface manifestation of internal tides generated near Hawaii , 1996 .

[28]  C. Provost,et al.  Ocean Tides for and from TOPEX/POSEIDON , 1995, Science.

[29]  E. Morozov Semidiurnal internal wave global field , 1995 .

[30]  Ernst J. O. Schrama,et al.  A preliminary tidal analysis of TOPEX/POSEIDON altimetry , 1994 .

[31]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[32]  C. Provost,et al.  The oceanic tides in the South Atlantic Ocean , 1994 .

[33]  Richard D. Ray,et al.  Energetics of global ocean tides from Geosat altimetry , 1991 .

[34]  Jean-Marc Molines,et al.  Improving ocean tide predictions by using additional semidiurnal constituents from spline interpolation in the frequency domain , 1991 .

[35]  A. Bennett Inverse methods for assessing ship-of-opportunity networks and estimating circulation and winds from tropical expendable bathythermograph data , 1990 .

[36]  Olivier Francis,et al.  Global charts of ocean tide loading effects , 1990 .

[37]  J. M. Vassie,et al.  The tides of the Atlantic Ocean, 60° N to 30° S , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[38]  C. Provost,et al.  Some tests of precision for a finite element model of ocean tides , 1986 .

[39]  C. Provost,et al.  Tidal Spectroscopy of the English Channel with a Numerical Model , 1985 .

[40]  A. Bennett,et al.  Open Ocean Modeling as an Inverse Problem: Tidal Theory , 1982 .

[41]  C. Provost,et al.  Numerical Modeling of the Harmonic Constituents of the Tides, with Application to the English Channel , 1981 .

[42]  E. W. Schwiderski Ocean tides, part II: A hydrodynamical interpolation model , 1980 .

[43]  C. Pekeris,et al.  Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[44]  R. Reynolds,et al.  An orthogonalized convolution method of tide prediction , 1975 .

[45]  T. H. Bell,et al.  Topographically generated internal waves in the open ocean , 1975 .

[46]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[47]  W. Munk,et al.  Tidal spectroscopy and prediction , 1966, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[48]  Tides of the Atlantic Ocean , 1945, Nature.