Web Usage Mining

Obecna charakteristika web miningu vcetně popisu metod a postupů zahrnovaných pod tento pojem. Vztah k dalsim oblastem (data mining, uměla inteligence, statistika, databaze, technologie internetu, management, atd.) Web usage mining - datove zdroje, metody předzpracovani dat, popis analytických metod a nastrojů, interpretace výstupů, možne oblasti užiti vcetně přikladů. Navrh metody řeseni, realizace a interpretace výstupů konkretniho ukolu založeneho na využiti výse popsaných metod web usage miningu.

[1]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[2]  Wagner Meira,et al.  Rank-preserving two-level caching for scalable search engines , 2001, SIGIR '01.

[3]  Peter Pirolli,et al.  Mining Longest Repeating Subsequences to Predict World Wide Web Surfing , 1999, USENIX Symposium on Internet Technologies and Systems.

[4]  Hema Raghavan,et al.  Improving ad relevance in sponsored search , 2010, WSDM '10.

[5]  Bing Liu,et al.  CFUI: Collaborative Filtering with Unlabeled Items , 2010, WITS 2010.

[6]  Yong Yu,et al.  Identifying ambiguous queries in web search , 2007, WWW '07.

[7]  Monika Henzinger,et al.  Analysis of a very large web search engine query log , 1999, SIGF.

[8]  Qiang Yang,et al.  A comparison of implicit and explicit links for web page classification , 2006, WWW '06.

[9]  Tao Luo,et al.  Effective personalization based on association rule discovery from web usage data , 2001, WIDM '01.

[10]  Daniel Dajun Zeng,et al.  Collaborative filtering in social tagging systems based on joint item-tag recommendations , 2010, CIKM.

[11]  Rajesh Parekh,et al.  Lessons and Challenges from Mining Retail E-Commerce Data , 2004, Machine Learning.

[12]  Ricardo A. Baeza-Yates,et al.  A Three Level Search Engine Index Based in Query Log Distribution , 2003, SPIRE.

[13]  Mehrdad Jalali,et al.  A recommender system approach for classifying user navigation patterns using longest common subsequence algorithm. , 2009 .

[14]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[15]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender System - A Case Study , 2000 .

[16]  Lars Schmidt-Thieme,et al.  Tag-aware recommender systems by fusion of collaborative filtering algorithms , 2008, SAC '08.

[17]  Hongwen Kang,et al.  Large-scale bot detection for search engines , 2010, WWW '10.

[18]  James E. Pitkow,et al.  Characterizing Browsing Strategies in the World-Wide Web , 1995, Comput. Networks ISDN Syst..

[19]  Bamshad Mobasher,et al.  Intelligent Techniques for Web Personalization , 2005, Lecture Notes in Computer Science.

[20]  Jaideep Srivastava,et al.  Data Preparation for Mining World Wide Web Browsing Patterns , 1999, Knowledge and Information Systems.

[21]  Hector Garcia-Molina,et al.  Link Spam Alliances , 2005, VLDB.

[22]  Amanda Spink,et al.  From E-Sex to E-Commerce: Web Search Changes , 2002, Computer.

[23]  Yihong Gong,et al.  Large-scale collaborative prediction using a nonparametric random effects model , 2009, ICML '09.

[24]  Feng Wang,et al.  Page Interest Estimation Based on the User's Browsing Behavior , 2009, 2009 Second International Conference on Information and Computing Science.

[25]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[26]  Amanda Spink,et al.  Searching the Web: the public and their queries , 2001 .

[27]  A. Govardhan,et al.  Effective web personalization using clustering , 2009, 2009 International Conference on Intelligent Agent & Multi-Agent Systems.

[28]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[29]  G. Takács,et al.  On the Gravity Recommendation System , 2007 .

[30]  Michael R. Lyu,et al.  Learning latent semantic relations from clickthrough data for query suggestion , 2008, CIKM '08.

[31]  Brian D. Davison,et al.  Detecting semantic cloaking on the web , 2006, WWW '06.

[32]  Myra Spiliopoulou,et al.  The Impact of Site Structure and User Environment on Session Reconstruction in Web Usage Analysis , 2002, WEBKDD.

[33]  Eric Horvitz,et al.  Patterns of search: analyzing and modeling Web query refinement , 1999 .

[34]  Brigitte Trousse,et al.  Advanced data preprocessing for intersites Web usage mining , 2004, IEEE Intelligent Systems.

[35]  Maurice D. Mulvenna,et al.  Discovering Internet marketing intelligence through online analytical web usage mining , 1998, SGMD.

[36]  张新伟,et al.  Web Usage Mining在远程教育中的应用研究 , 2008 .

[37]  Tom Heskes,et al.  Automatic Categorization of Web Pages and User Clustering with Mixtures of Hidden Markov Models , 2002, WEBKDD.

[38]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[39]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[40]  Fabrizio Silvestri,et al.  The query-vector document model , 2006, CIKM '06.

[41]  Enhong Chen,et al.  Context-aware query suggestion by mining click-through and session data , 2008, KDD.

[42]  Yen-Jen Oyang,et al.  Relevant term suggestion in interactive web search based on contextual information in query session logs , 2003, J. Assoc. Inf. Sci. Technol..

[43]  Georgios Paliouras,et al.  Discovering user communities on the Internet using unsupervised machine learning techniques , 2002, Interact. Comput..

[44]  Nivio Ziviani,et al.  Using association rules to discover search engines related queries , 2003, Proceedings of the IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (IEEE Cat. No.03EX726).

[45]  Tao Luo,et al.  Discovery and Evaluation of Aggregate Usage Profiles for Web Personalization , 2004, Data Mining and Knowledge Discovery.

[46]  Reiner Kraft,et al.  Mining anchor text for query refinement , 2004, WWW '04.

[47]  V. Mohanraj,et al.  Capturing Intuition of Online Users using a Web Usage Mining , 2009, 2009 IEEE International Advance Computing Conference.

[48]  Yiqun Liu,et al.  Identifying web spam with user behavior analysis , 2008, AIRWeb '08.

[49]  Mark Levene,et al.  Data Mining of User Navigation Patterns , 1999, WEBKDD.

[50]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[51]  Arkadiusz Paterek,et al.  Improving regularized singular value decomposition for collaborative filtering , 2007 .

[52]  Hsinchun Chen,et al.  Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering , 2004, TOIS.

[53]  Brian D. Davison,et al.  Finding Relevant Website Queries , 2003, WWW.

[54]  Jianxin Wang Reducing the Overlap among Hierarchical Clusters with a GA-Based Approach , 2009, 2009 First International Conference on Information Science and Engineering.

[55]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[56]  Jaideep Srivastava,et al.  Automatic personalization based on Web usage mining , 2000, CACM.

[57]  Myra Spiliopoulou,et al.  A Framework for the Evaluation of Session Reconstruction Heuristics in Web-Usage Analysis , 2003, INFORMS J. Comput..

[58]  Bamshad Mobasher,et al.  Web Usage Mining and Personalization , 2004, The Practical Handbook of Internet Computing.

[59]  Wei-Ying Ma,et al.  Probabilistic query expansion using query logs , 2002, WWW '02.

[60]  Yehuda Koren,et al.  Collaborative filtering with temporal dynamics , 2009, KDD.

[61]  Ricardo A. Baeza-Yates,et al.  Extracting semantic relations from query logs , 2007, KDD '07.

[62]  Wynne Hsu,et al.  Mining association rules with multiple minimum supports , 1999, KDD '99.

[63]  Ricardo A. Baeza-Yates,et al.  Query Recommendation Using Query Logs in Search Engines , 2004, EDBT Workshops.

[64]  Katsumi Takahashi,et al.  Experiments on Query Expansion for Internet Yellow Page Services Using Web Log Mining , 2002, VLDB.

[65]  Eric Horvitz,et al.  Collaborative Filtering by Personality Diagnosis: A Hybrid Memory and Model-Based Approach , 2000, UAI.

[66]  Steve Chien,et al.  Semantic similarity between search engine queries using temporal correlation , 2005, WWW '05.

[67]  Lisa Fan,et al.  A web personalization system based on users’ interested domains , 2008, 2008 7th IEEE International Conference on Cognitive Informatics.

[68]  Joseph A. Konstan,et al.  Introduction to recommender systems: Algorithms and Evaluation , 2004, TOIS.

[69]  Wei-Ying Ma,et al.  Query Expansion by Mining User Logs , 2003, IEEE Trans. Knowl. Data Eng..

[70]  Ravi Kumar,et al.  A Characterization of Online Search Behavior , 2009, IEEE Data Eng. Bull..

[71]  Nick Craswell,et al.  Random walks on the click graph , 2007, SIGIR.

[72]  Alberto O. Mendelzon,et al.  The World Wide Web and Databases , 1998, Lecture Notes in Computer Science.

[73]  Aristides Gionis,et al.  Query-log mining for detecting polysemy and spam , 2008 .

[74]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[75]  Ramesh R. Sarukkai,et al.  Link prediction and path analysis using Markov chains , 2000, Comput. Networks.

[76]  Ji-Rong Wen,et al.  Clustering user queries of a search engine , 2001, WWW '01.

[77]  Norman A. Graf,et al.  Clustering algorithm studies , 2001 .

[78]  Doug Beeferman,et al.  Agglomerative clustering of a search engine query log , 2000, KDD '00.

[79]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[80]  Luo Si,et al.  Flexible Mixture Model for Collaborative Filtering , 2003, ICML.

[81]  Wu-Jun Li,et al.  TagiCoFi: tag informed collaborative filtering , 2009, RecSys '09.

[82]  Padhraic Smyth,et al.  Model-Based Clustering and Visualization of Navigation Patterns on a Web Site , 2003, Data Mining and Knowledge Discovery.

[83]  Matthew Richardson,et al.  Predicting clicks: estimating the click-through rate for new ads , 2007, WWW '07.

[84]  Lars Schmidt-Thieme,et al.  Guest Editors' Introduction: Recommender Systems , 2007, IEEE Intell. Syst..

[85]  Ricardo A. Baeza-Yates,et al.  Graphs from Search Engine Queries , 2007, SOFSEM.

[86]  Jaideep Srivastava,et al.  Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.

[87]  Benjamin Rey,et al.  Generating query substitutions , 2006, WWW '06.

[88]  C. Lee Giles,et al.  Extracting query modifications from nonlinear SVMs , 2002, WWW '02.

[89]  Georgios Paliouras,et al.  Web Usage Mining as a Tool for Personalization: A Survey , 2003, User Modeling and User-Adapted Interaction.

[90]  Daniel Zeng,et al.  Exploring Information Hidden in Tags: A Subject-Based Item Recommendation Approach , 2009, WITS 2009.

[91]  Yibo Ren,et al.  Research on personalized recommendation based on web usage mining using collaborative filtering technique , 2009 .

[92]  Robert Wetzker,et al.  A hybrid approach to item recommendation in folksonomies , 2009, ESAIR '09.

[93]  Sergio A. Alvarez,et al.  Efficient Adaptive-Support Association Rule Mining for Recommender Systems , 2004, Data Mining and Knowledge Discovery.

[94]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[95]  Fabrizio Silvestri,et al.  An Online Recommender System for Large Web Sites , 2004, IEEE/WIC/ACM International Conference on Web Intelligence (WI'04).

[96]  Kristian J. Hammond,et al.  Mining navigation history for recommendation , 2000, IUI '00.

[97]  Deepak Agarwal,et al.  fLDA: matrix factorization through latent dirichlet allocation , 2010, WSDM '10.

[98]  Ralph Kimball,et al.  The Data Webhouse Toolkit: Building the Web-enabled Data Warehouse , 2000, Ind. Manag. Data Syst..

[99]  Mark Hansen,et al.  Using navigation data to improve IR functions in the context of web search , 2001, CIKM '01.

[100]  Jimeng Sun,et al.  Temporal recommendation on graphs via long- and short-term preference fusion , 2010, KDD.

[101]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[102]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[103]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[104]  Nathan Srebro,et al.  Fast maximum margin matrix factorization for collaborative prediction , 2005, ICML.

[105]  Taher Niknam,et al.  A New Evolutionary Algorithm for Cluster Analysis , 2008 .

[106]  Marc Najork,et al.  Detecting spam web pages through content analysis , 2006, WWW '06.

[107]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[108]  Ricardo A. Baeza-Yates,et al.  Applications of Web Query Mining , 2005, ECIR.

[109]  Wiebe van der Hoek,et al.  SOFSEM 2007: Theory and Practice of Computer Science , 2007 .

[110]  Jaideep Srivastava,et al.  Web mining: information and pattern discovery on the World Wide Web , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[111]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[112]  Xin Jin,et al.  Web usage mining based on probabilistic latent semantic analysis , 2004, KDD.

[113]  Licia Capra,et al.  Temporal diversity in recommender systems , 2010, SIGIR.

[114]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[115]  Yong Yu,et al.  A Novel Web Page Categorization Algorithm Based on Block Propagation Using Query-Log Information , 2006, WAIM.

[116]  Charu C. Aggarwal,et al.  A Tree Projection Algorithm for Generation of Frequent Item Sets , 2001, J. Parallel Distributed Comput..

[117]  Myra Spiliopoulou,et al.  Analysis of navigation behaviour in web sites integrating multiple information systems , 2000, The VLDB Journal.

[118]  George Karypis,et al.  Selective Markov models for predicting Web page accesses , 2004, TOIT.

[119]  Alfred Kobsa,et al.  The Adaptive Web, Methods and Strategies of Web Personalization , 2007, The Adaptive Web.

[120]  Qiang Yang,et al.  Building bridges for web query classification , 2006, SIGIR.

[121]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[122]  Anupam Joshi,et al.  Mining web access logs using a fuzzy relational clustering algorithm based on a robust estimator , 1999, WWW 1999.

[123]  Vipin Kumar,et al.  Discovery of Web Robot Sessions Based on their Navigational Patterns , 2004, Data Mining and Knowledge Discovery.

[124]  Rynson W. H. Lau,et al.  Knowledge and Data Engineering for e-Learning Special Issue of IEEE Transactions on Knowledge and Data Engineering , 2008 .

[125]  Myra Spiliopoulou,et al.  Web usage mining for Web site evaluation , 2000, CACM.

[126]  M.R. Meybodi,et al.  Web Page Personalization Based on Weighted Association Rules , 2009, 2009 International Conference on Electronic Computer Technology.

[127]  Enhong Chen,et al.  Towards context-aware search by learning a very large variable length hidden markov model from search logs , 2009, WWW '09.

[128]  Shui-Lung Chuang,et al.  Enriching Web taxonomies through subject categorization of query terms from search engine logs , 2003, Decis. Support Syst..

[129]  Luo Si,et al.  A study of mixture models for collaborative filtering , 2006, Information Retrieval.

[130]  Hsinchun Chen,et al.  Analyzing Consumer-Product Graphs: Empirical Findings and Applications in Recommender Systems , 2005, Manag. Sci..

[131]  Yehuda Koren,et al.  The BellKor Solution to the Netflix Grand Prize , 2009 .

[132]  Olfa Nasraoui,et al.  Mining search engine query logs for query recommendation , 2006, WWW '06.

[133]  Fabrizio Silvestri,et al.  Know your neighbors: web spam detection using the web topology , 2007, SIGIR.

[134]  Amanda Spink,et al.  How to Define Searching Sessions on Web Search Engines , 2006, WEBKDD.

[135]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[136]  Myra Spiliopoulou,et al.  Web Usage Analysis and User Profiling , 2002, Lecture Notes in Computer Science.