Turing Computability and Membrane Computing

Alan Turing began a new area in science; he discovered that there are universal computers, which in principal are very simple. Up to now this is the basis of a modern computing theory and practice. In the paper one considers Turing computability in the frame of P (membrane) systems and other distributive systems. An overview of the recent results about small universal P and DNA systems and some open problems and possible directions of investigation are presented.

[1]  Maurice Margenstern,et al.  Frontier between decidability and undecidability: a survey , 2000, Theor. Comput. Sci..

[2]  R J Lipton,et al.  DNA solution of hard computational problems. , 1995, Science.

[3]  Artiom Alhazov,et al.  Small Universal Tvdh and Test Tube Systems , 2011, Int. J. Found. Comput. Sci..

[4]  Maurice Margenstern,et al.  A Universal Time-Varying Distributed H System of Degree 1 , 2001, DNA.

[5]  Emil L. Post Formal Reductions of the General Combinatorial Decision Problem , 1943 .

[6]  Artiom Alhazov,et al.  Minimization strategies for maximally parallel multiset rewriting systems , 2011, Theor. Comput. Sci..

[7]  Erik Winfree,et al.  DNA Based Computers V , 2000 .

[8]  John Cocke,et al.  Universality of Tag Systems with P = 2 , 1964, JACM.

[9]  Maurice Margenstern,et al.  Surprising Areas in the Quest for Small Universal Devices , 2006, MFCSIT.

[10]  Gheorghe Paun,et al.  The Oxford Handbook of Membrane Computing , 2010 .

[11]  Gheorghe Paun,et al.  Language Theory and Molecular Genetics: Generative Mechanisms Suggested by DNA Recombination , 1997, Handbook of Formal Languages.

[12]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[13]  Artiom Alhazov,et al.  Nine Universal Circular Post Machines , 2002, Comput. Sci. J. Moldova.

[14]  L. M. Pavlotskaya,et al.  Solvability of the halting problem for certain classes of Turing machines , 1973 .

[15]  Artiom Alhazov,et al.  On Small Universal Splicing Systems , 2012, Int. J. Found. Comput. Sci..

[16]  Artiom Alhazov,et al.  Communication P Systems , 2009 .

[17]  Maurice Margenstern,et al.  Time-Varying Distributed H Systems of Degree 2 Can Carry Out Parallel Computations , 2002, DNA.

[18]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[19]  Gheorghe Paun,et al.  DNA Computing: New Computing Paradigms , 1998 .

[20]  Pierluigi Frisco Computing with Cells - Advances in Membrane Computing , 2009 .

[21]  Maurice Margenstern,et al.  Time-Varying Distributed H Systems: An Overview , 2004, Fundam. Informaticae.

[22]  Andrei Păun,et al.  On membrane computing based on splicing , 2001, Where Mathematics, Computer Science, Linguistics and Biology Meet.

[23]  György Vaszil,et al.  Small Computationally Complete Symport/Antiport P Systems , 2006 .

[24]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[25]  Liesbeth De Mol,et al.  Tag systems and Collatz-like functions , 2008, Theor. Comput. Sci..

[26]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[27]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[28]  Maurice Margenstern,et al.  Time-Varying Distributed H Systems with Parallel Computations: The Problem Is Solved , 2003, DNA.

[29]  Rudolf Freund,et al.  Test tube systems: when two tubes are enough , 1999, Developments in Language Theory.

[30]  Erzsébet Csuhaj-Varjú,et al.  On small universal antiport P systems , 2007, Theor. Comput. Sci..

[31]  Pierluigi Frisco,et al.  On Variants of Communicating Distributed H Systems , 2001, Fundam. Informaticae.

[32]  Grzegorz Rozenberg,et al.  Aspects of Molecular Computing , 2004, Lecture Notes in Computer Science.

[33]  Maurice Margenstern,et al.  On the Optimal Number of Instructions for Universal Turing Machines Connected With a Finite Automaton , 2003, Int. J. Algebra Comput..

[34]  Yurii Rogozhin,et al.  Small Universal Turing Machines , 1996, Theor. Comput. Sci..

[35]  L Priese,et al.  Finite H-systems with 3 test tubes are not predictable. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[36]  T. Head Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. , 1987, Bulletin of mathematical biology.

[37]  Grzegorz Rozenberg,et al.  Introduction: DNA Computing in a Nutshell , 1998 .

[38]  Raphael M. Robinson,et al.  MINSKY'S SMALL UNIVERSAL TURING MACHINE , 1991 .

[39]  Artiom Alhazov,et al.  Circular Post Machines and P Systems with Exo-insertion and Deletion , 2011, Int. Conf. on Membrane Computing.

[40]  Piotr Lipinski,et al.  Improving Watermark Resistance against Removal Attacks Using Orthogonal Wavelet Adaptation , 2012, SOFSEM.

[41]  Grzegorz Rozenberg,et al.  Handbook of formal languages, vol. 3: beyond words , 1997 .

[42]  Artiom Alhazov,et al.  Computational Power of Symport/Antiport: History, Advances, and Open Problems , 2005, Workshop on Membrane Computing.

[43]  Erzsébet Csuhaj-Varjú,et al.  Test Tube Distributed Systems Based on Splicing , 1996, Comput. Artif. Intell..

[44]  Sergey Verlan A boundary result on enhanced time-varying distributed H systems with parallel computations , 2005, Theor. Comput. Sci..

[45]  Erzsébet Csuhaj-Varjú,et al.  On length-separating test tube systems , 2007, Natural Computing.

[46]  Turlough Neary,et al.  The complexity of small universal Turing machines: A survey , 2009, Theor. Comput. Sci..

[47]  Yurii Rogozhin,et al.  On the Rule Complexity of Universal Tissue P Systems , 2005, Workshop on Membrane Computing.

[48]  Artiom Alhazov,et al.  A Small Universal Splicing P System , 2010, Int. Conf. on Membrane Computing.

[49]  Pierluigi Frisco Computing with Cells , 2009 .

[50]  David I. Lewin,et al.  DNA computing , 2002, Comput. Sci. Eng..

[51]  Sergey Verlan,et al.  Communicating Distributed H Systems with Alternating Filters , 2004, Aspects of Molecular Computing.

[52]  Ivan Korec,et al.  Small Universal Register Machines , 1996, Theor. Comput. Sci..