Developmentally Regulated Subnuclear Genome Reorganization Restricts Neural Progenitor Competence in Drosophila

[1]  Erin A. Bassett,et al.  Cell fate determination in the vertebrate retina , 2012, Trends in Neurosciences.

[2]  Bradley E. Bernstein,et al.  DNA Sequence-Dependent Compartmentalization and Silencing of Chromatin at the Nuclear Lamina , 2012, Cell.

[3]  N. Šestan,et al.  Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex , 2012, Development.

[4]  Tzumin Lee,et al.  Hierarchical Deployment of Factors Regulating Temporal Fate in a Diverse Neuronal Lineage of the Drosophila Central Brain , 2012, Neuron.

[5]  Michael D. Cleary,et al.  Drosophila Polycomb complexes restrict neuroblast competence to generate motoneurons , 2012, Development.

[6]  Y. Y. Shevelyov,et al.  The nuclear lamina as a gene-silencing hub. , 2012, Current issues in molecular biology.

[7]  Kristin J. Robinson,et al.  Functional genomics identifies neural stem cell sub-type expression profiles and genes regulating neuroblast homeostasis. , 2012, Developmental biology.

[8]  J. Posakony,et al.  Identification of hunchback cis-regulatory DNA conferring temporal expression in neuroblasts and neurons. , 2012, Gene expression patterns : GEP.

[9]  S. Thor,et al.  Seven up acts as a temporal factor during two different stages of neuroblast 5-6 development , 2011, Development.

[10]  C. Doe,et al.  The pipsqueak-domain proteins Distal antenna and Distal antenna-related restrict Hunchback neuroblast expression and early-born neuronal identity , 2011, Development.

[11]  Mark Groudine,et al.  On emerging nuclear order , 2011, The Journal of cell biology.

[12]  Benjamin Leblanc,et al.  Polycomb-Dependent Regulatory Contacts between Distant Hox Loci in Drosophila , 2011, Cell.

[13]  P. Flicek,et al.  Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. , 2010, Molecular cell.

[14]  S. Thor,et al.  Segment-Specific Neuronal Subtype Specification by the Integration of Anteroposterior and Temporal Cues , 2010, PLoS biology.

[15]  A. Ponti,et al.  The spatial dynamics of tissue-specific promoters during C. elegans development. , 2010, Genes & development.

[16]  A. Gould,et al.  Regulating neural proliferation in the Drosophila CNS , 2010, Current Opinion in Neurobiology.

[17]  S. Gasser,et al.  Repetitive transgenes in C. elegans accumulate heterochromatic marks and are sequestered at the nuclear envelope in a copy-number- and lamin-dependent manner. , 2010, Cold Spring Harbor symposia on quantitative biology.

[18]  B. van Steensel,et al.  Role of the nuclear lamina in genome organization and gene expression. , 2010, Cold Spring Harbor symposia on quantitative biology.

[19]  S. Thor,et al.  Neuronal Subtype Specification within a Lineage by Opposing Temporal Feed-Forward Loops , 2009, Cell.

[20]  K. White,et al.  Versatile P(acman) BAC Libraries for Transgenesis Studies in Drosophila melanogaster , 2009, Nature Methods.

[21]  H. Okano,et al.  Cell types to order: temporal specification of CNS stem cells , 2009, Current Opinion in Neurobiology.

[22]  D. Spector,et al.  Nuclear neighborhoods and gene expression. , 2009, Current opinion in genetics & development.

[23]  K. S. Egorova,et al.  The B-type lamin is required for somatic repression of testis-specific gene clusters , 2009, Proceedings of the National Academy of Sciences.

[24]  Chris Q Doe,et al.  Pdm and Castor close successive temporal identity windows in the NB3-1 lineage , 2008, Development.

[25]  M. Cayouette,et al.  Ikaros Confers Early Temporal Competence to Mouse Retinal Progenitor Cells , 2008, Neuron.

[26]  L. Wessels,et al.  Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions , 2008, Nature.

[27]  E. Bertolino,et al.  Transcriptional repression mediated by repositioning of genes to the nuclear lamina , 2008, Nature.

[28]  Elizabeth Kerr,et al.  Recruitment to the Nuclear Periphery Can Alter Expression of Genes in Human Cells , 2008, PLoS genetics.

[29]  S. Mcconnell,et al.  The determination of projection neuron identity in the developing cerebral cortex , 2008, Current Opinion in Neurobiology.

[30]  Michael B. Stadler,et al.  Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling , 2007, The Journal of comparative neurology.

[31]  M. Mlodzik,et al.  distal antenna and distal antenna-related function in the retinal determination network during eye development in Drosophila. , 2007, Developmental biology.

[32]  R. Maeda,et al.  An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases , 2007, Proceedings of the National Academy of Sciences.

[33]  Hugo J. Bellen,et al.  P[acman]: A BAC Transgenic Platform for Targeted Insertion of Large DNA Fragments in D. melanogaster , 2006, Science.

[34]  Haojiang Luan,et al.  Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression , 2006, Neuron.

[35]  M. Fornerod,et al.  Characterization of the Drosophila melanogaster genome at the nuclear lamina , 2006, Nature Genetics.

[36]  Chris Q Doe,et al.  Regulation of neuroblast competence: multiple temporal identity factors specify distinct neuronal fates within a single early competence window. , 2006, Genes & development.

[37]  Georg Vogler,et al.  Timing of identity: spatiotemporal regulation of hunchback in neuroblast lineages of Drosophila by Seven-up and Prospero , 2006, Development.

[38]  T. Misteli,et al.  Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus , 2006, Journal of Cell Science.

[39]  Masataka Okabe,et al.  seven-up Controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts. , 2005, Developmental cell.

[40]  Bret J. Pearson,et al.  Regulation of temporal identity transitions in Drosophila neuroblasts. , 2005, Developmental cell.

[41]  Bret J. Pearson,et al.  Specification of temporal identity in the developing nervous system. , 2004, Annual review of cell and developmental biology.

[42]  D. Rowitch Glial specification in the vertebrate neural tube , 2004, Nature Reviews Neuroscience.

[43]  Michele P Calos,et al.  Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. , 2004, Genetics.

[44]  Bret J. Pearson,et al.  Regulation of neuroblast competence in Drosophila , 2003, Nature.

[45]  S. Cohen,et al.  distal antenna and distal antenna related encode nuclear proteins containing pipsqueak motifs involved in antenna development in Drosophila , 2003, Development.

[46]  Chih-Chao Yang,et al.  pipsqueak Encodes a Factor Essential for Sequence-Specific Targeting of a Polycomb Group Protein Complex , 2002, Molecular and Cellular Biology.

[47]  Wendy A Bickmore,et al.  Chromatin Motion Is Constrained by Association with Nuclear Compartments in Human Cells , 2002, Current Biology.

[48]  M. Lehmann,et al.  The Drosophila Pipsqueak protein defines a new family of helix-turn-helix DNA-binding proteins , 2002, Development Genes and Evolution.

[49]  J. Urban,et al.  Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. , 2002, Development.

[50]  S. Gasser,et al.  Chromosome Dynamics in the Yeast Interphase Nucleus , 2001, Science.

[51]  Bret J. Pearson,et al.  Drosophila Neuroblasts Sequentially Express Transcription Factors which Specify the Temporal Identity of Their Neuronal Progeny , 2001, Cell.

[52]  F. J. Livesey,et al.  Vertebrate neural cell-fate determination: Lessons from the retina , 2001, Nature Reviews Neuroscience.

[53]  T. Brody,et al.  Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. , 2000, Developmental biology.

[54]  C. Desplan,et al.  Bicoid-independent formation of thoracic segments in Drosophila. , 2000, Science.

[55]  C Q Doe,et al.  Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. , 1999, Development.

[56]  R. Kingston,et al.  Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. , 1999, Immunity.

[57]  J. Nagle,et al.  Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. , 1998, Genes & development.

[58]  A. Murray,et al.  Interphase chromosomes undergo constrained diffusional motion in living cells , 1997, Current Biology.

[59]  C. Rickert,et al.  The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. , 1996, Developmental biology.

[60]  C Q Doe,et al.  The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. , 1996, Developmental biology.

[61]  N. Perrimon,et al.  Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. , 1995, The EMBO journal.

[62]  C. Rieder,et al.  Greatwall kinase , 2004, The Journal of cell biology.

[63]  C. Doe Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system. , 1992, Development.

[64]  Peter A. Lawrence,et al.  Control of Drosophila body pattern by the hunchback morphogen gradient , 1992, Cell.

[65]  S. Mcconnell,et al.  The determination of neuronal fate in the cerebral cortex , 1989, Trends in Neurosciences.