Ultra‐Robust Graphene Oxide‐Silk Fibroin Nanocomposite Membranes

Nanocomposite materials in forms of membranes, fi lms, and coatings are gaining surging interests in structural and functional applications, because they are more effi cient in loading transfer than conventional composites and can substantially eliminate catastrophic failure caused by poor loading transfer between components. To enhance the mechanical properties of polymeric nanocomposites, carbon nanotubes, intercalated clay, graphene, and graphene oxide are added as high-performance reinforcing nanofi llers. For example, ultrahigh toughness was reported for polyvinyl alcohol nanocomposite fi lms fi lled with single-walled carbon nanotubes; [ 1 ] and ultrahigh modulus was reported for crosslinked nanoclay containing nanocomposites. [ 2 ] However, improving toughness is usually achieved by increasing the ultimate strain and compromising the strength, which is not desired for high-performance applications. [ 3 ]

[1]  Jozef Adamcik,et al.  Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. , 2012, Nature nanotechnology.

[2]  V. Tsukruk,et al.  Compliant, Robust, and Truly Nanoscale Free‐Standing Multilayer Films Fabricated Using Spin‐Assisted Layer‐by‐Layer Assembly , 2004 .

[3]  V. Tsukruk,et al.  Self-recovery of stressed nanomembranes , 2005 .

[4]  Peng Xu,et al.  Biomaterial coatings by stepwise deposition of silk fibroin. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[5]  Fritz Vollrath,et al.  Silk as a Biomimetic Ideal for Structural Polymers , 2009 .

[6]  K. Tu,et al.  Mechanical property measurement of thin polymeric-low dielectric-constant films using bulge testing method , 2000 .

[7]  J. Kieffer,et al.  Hardness and Young’s modulus of amorphous a-SiC thin films determined by nanoindentation and bulge tests , 1994 .

[8]  R. Vaia,et al.  Flexible Silk–Inorganic Nanocomposites: From Transparent to Highly Reflective , 2010 .

[9]  V. Tsukruk,et al.  Graphene oxide--polyelectrolyte nanomembranes. , 2010, ACS nano.

[10]  Vladimir V. Tsukruk,et al.  Assembly of supramolecular polymers in ultrathin films , 1997 .

[11]  Hyunhyub Ko,et al.  Freestanding 2D Arrays of Silver Nanorods , 2006 .

[12]  David L. Kaplan,et al.  Mechanism of silk processing in insects and spiders , 2003, Nature.

[13]  V. Tsukruk,et al.  Probing Soft Matter with the Atomic Force Microscopies: Imaging and Force Spectroscopy , 2010 .

[14]  Z. Tang,et al.  Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. , 2007, Nano letters.

[15]  V. Tsukruk,et al.  Perforated, freely suspended layer-by-layer nanoscale membranes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[16]  M. Terrones,et al.  Interphases in Graphene Polymer‐based Nanocomposites: Achievements and Challenges , 2011, Advanced materials.

[17]  David L. Kaplan,et al.  Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy , 2006 .

[18]  R. Vaia,et al.  Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites. , 2010, ACS nano.

[19]  Y. Inoue,et al.  Thermal and Mechanical Properties of a Poly(ε-caprolactone)/Graphite Oxide Composite , 2008 .

[20]  D. Kaplan,et al.  Unfolding the multi-length scale domain structure of silk fibroin protein , 2006 .

[21]  J. Simonsen,et al.  Gradient of nanomechanical properties in the interphase of cellulose nanocrystal composites , 2012 .

[22]  Hsing-lin Wang,et al.  Controlled Fabrication of Polyelectrolyte Multilayer Thin Films Using Spin‐Assembly , 2001 .

[23]  S. Stankovich,et al.  Preparation and characterization of graphene oxide paper , 2007, Nature.

[24]  R. L. Edwards,et al.  Comparison of tensile and bulge tests for thin-film silicon nitride , 2004 .

[25]  Jan Vos,et al.  A flexible sigmoid function of determinate growth. , 2003, Annals of botany.

[26]  Thomas Scheibel,et al.  Polymeric materials based on silk proteins , 2008 .

[27]  Joseph Berkson,et al.  The Application of the Logistic Function to Experimental Data. , 1928 .

[28]  R. Piner,et al.  Mechanical properties of monolayer graphene oxide. , 2010, ACS nano.

[29]  G. Wallace,et al.  Processable aqueous dispersions of graphene nanosheets. , 2008, Nature nanotechnology.

[30]  Hui-li Shao,et al.  A study on the flow stability of regenerated silk fibroin aqueous solution. , 2005, International Journal of Biological Macromolecules.

[31]  Mo Song,et al.  The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite , 2009, Nanotechnology.

[32]  Maneesh K. Gupta,et al.  Silk‐on‐Silk Layer‐by‐Layer Microcapsules , 2011, Advanced materials.

[33]  A. Waas,et al.  Ultrastrong and Stiff Layered Polymer Nanocomposites , 2007, Science.

[34]  V. Tsukruk,et al.  Organized arrays of nanostructures in freely suspended nanomembranes. , 2005, Soft matter.

[35]  P. Damman,et al.  Wrinkling of stimuloresponsive surfaces: mechanical instability coupled to diffusion. , 2008, Physical review letters.

[36]  Katsuhiko Ariga,et al.  ASSEMBLY OF MULTICOMPONENT PROTEIN FILMS BY MEANS OF ELECTROSTATIC LAYER-BY-LAYER ADSORPTION , 1995 .

[37]  G. Wallace,et al.  Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper , 2008 .

[38]  Y. Dzenis Structural Nanocomposites , 2008, Science.

[39]  C. Dunn,et al.  Mechanical properties and microstructures of Al-1%Si thin film metallizations , 1987 .

[40]  Sidney T. Malak,et al.  Silk layering as studied with neutron reflectivity. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[41]  Ung-Jin Kim,et al.  Structure and properties of silk hydrogels. , 2004, Biomacromolecules.

[42]  Willi Volksen,et al.  A buckling-based metrology for measuring the elastic moduli of polymeric thin films , 2004, Nature materials.

[43]  David L Kaplan,et al.  Porous 3-D scaffolds from regenerated silk fibroin. , 2004, Biomacromolecules.

[44]  David L. Kaplan,et al.  Controlling silk fibroin particle features for drug delivery. , 2010, Biomaterials.

[45]  V. Tsukruk,et al.  Freely Suspended Gold Nanoparticle Arrays , 2005 .

[46]  Klaus Kern,et al.  Elastic properties of chemically derived single graphene sheets. , 2008, Nano letters.

[47]  Frank T. Fisher,et al.  Reinforcement mechanisms in MWCNT-filled polycarbonate , 2006 .

[48]  J. C. H. Affdl,et al.  The Halpin-Tsai Equations: A Review , 1976 .

[49]  Hyunhyub Ko,et al.  Carbon Nanotube Arrays Encapsulated into Freely Suspended Flexible Films , 2005 .

[50]  Vladimir V Tsukruk,et al.  Freely suspended nanocomposite membranes as highly sensitive sensors , 2004, Nature materials.

[51]  Zhiyong Tang,et al.  Nanostructured artificial nacre , 2003, Nature materials.

[52]  Kookheon Char,et al.  Fabrication of Highly Ordered Multilayer Films Using a Spin Self‐Assembly Method , 2001 .

[53]  Andreas Walther,et al.  Genetic engineering of biomimetic nanocomposites: diblock proteins, graphene, and nanofibrillated cellulose. , 2011, Angewandte Chemie.

[54]  Hua Deng,et al.  Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites , 2011 .

[55]  Hisaaki Tobushi,et al.  Analysis of the mechanical behavior of shape memory polymer membranes by nanoindentation, bulging and point membrane deflection tests , 2000 .

[56]  R. Ruoff,et al.  The chemistry of graphene oxide. , 2010, Chemical Society reviews.

[57]  Helmuth Möhwald,et al.  Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine) , 1993 .

[58]  David L Kaplan,et al.  Silk-based biomaterials. , 2003, Biomaterials.

[59]  V. Tsukruk,et al.  Freely Suspended Layer‐by‐Layer Nanomembranes: Testing Micromechanical Properties , 2005 .

[60]  Randolph V Lewis,et al.  Spider silk: ancient ideas for new biomaterials. , 2006, Chemical reviews.

[61]  Hiromi Yamada,et al.  Preparation of undegraded native molecular fibroin solution from silkworm cocoons , 2001 .

[62]  N. Kotov,et al.  Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness. , 2009, ACS Nano.

[63]  N. K. Myshkin,et al.  Nanomechanical Probing of Layered Nanoscale Polymer Films With Atomic Force Microscopy , 2004 .

[64]  Maneesh K. Gupta,et al.  A Facile Fabrication Strategy for Patterning Protein Chain Conformation in Silk Materials , 2010, Advanced materials.

[65]  L. Brinson,et al.  Interfacial and Substrate Effects on Local Elastic Properties of Polymers Using Coupled Experiments and Modeling of Nanoindentation , 2011 .

[66]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[67]  Vladimir V Tsukruk,et al.  Complex buckling instability patterns of nanomembranes with encapsulated gold nanoparticle arrays. , 2006, Nano letters.

[68]  Ray Gunawidjaja,et al.  Mechanical Properties of Robust Ultrathin Silk Fibroin Films , 2007 .

[69]  SonBinh T. Nguyen,et al.  Additive-free hydrogelation of graphene oxide by ultrasonication , 2012 .

[70]  Hyunhyub Ko,et al.  Buckling Behavior of Highly Oriented Silver Nanowires Encapsulated within Layer-by-Layer Films , 2007 .

[71]  Maneesh K. Gupta,et al.  Utilizing conformational changes for patterning thin films of recombinant spider silk proteins. , 2012, Biomacromolecules.

[72]  G. Shi,et al.  Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure , 2009 .

[73]  Ray Gunawidjaja,et al.  Flexible and Robust 2D Arrays of Silver Nanowires Encapsulated within Freestanding Layer‐by‐Layer Films , 2006 .

[74]  D. Kaplan,et al.  Effect of hydration on silk film material properties. , 2010, Macromolecular bioscience.

[75]  M. Talea,et al.  On the Young's modulus of 304 L stainless steel thin films , 2000 .

[76]  L. Brinson,et al.  Bio‐Inspired Borate Cross‐Linking in Ultra‐Stiff Graphene Oxide Thin Films , 2011, Advanced materials.

[77]  Qi Shao,et al.  Flexible nanogenerators based on graphene oxide films for acoustic energy harvesting. , 2012, Angewandte Chemie.