Genomic and systems evolution in Vibrionaceae species

[1]  Z. Gu,et al.  Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. , 2002, Molecular biology and evolution.

[2]  E. Greenberg,et al.  Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Shih-Feng Tsai,et al.  Comparative genome analysis of Vibrio vulnificus, a marine pathogen. , 2003, Genome research.

[4]  V. Daubin,et al.  Comparative genomics and the evolution of prokaryotes. , 2007, Trends in microbiology.

[5]  Didier Mazel,et al.  Integrons: agents of bacterial evolution , 2006, Nature Reviews Microbiology.

[6]  Xiaohua Zhang,et al.  Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates , 2006, Letters in applied microbiology.

[7]  W. Doolittle,et al.  Recovery and evolutionary analysis of complete integron gene cassette arrays from Vibrio , 2006, BMC Evolutionary Biology.

[8]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[9]  E V Koonin,et al.  Lineage-specific gene expansions in bacterial and archaeal genomes. , 2001, Genome research.

[10]  Yan Boucher,et al.  Integrons: mobilizable platforms that promote genetic diversity in bacteria. , 2007, Trends in microbiology.

[11]  D. Mazel,et al.  Chromosomal toxin–antitoxin loci can diminish large‐scale genome reductions in the absence of selection , 2007, Molecular microbiology.

[12]  J. Dubuisson,et al.  Tol-Pal proteins are critical cell envelope components of Erwinia chrysanthemi affecting cell morphology and virulence. , 2005, Microbiology.

[13]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[14]  F. Hayes A Family of Stability Determinants in Pathogenic Bacteria , 1998, Journal of bacteriology.

[15]  J. Sturgis,et al.  The TolQ–TolR proteins energize TolA and share homologies with the flagellar motor proteins 
MotA–MotB , 2001, Molecular microbiology.

[16]  G. Schoolnik,et al.  The complete genome sequence of Vibrio cholerae: a tale of two chromosomes and of two lifestyles , 2000, Genome Biology.

[17]  Ronald K. Taylor,et al.  Integration Host Factor Positively Regulates Virulence Gene Expression in Vibrio cholerae , 2008, Journal of bacteriology.

[18]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[19]  A. Faruque,et al.  Transcriptional Profiling of Vibrio cholerae Recovered Directly from Patient Specimens during Early and Late Stages of Human Infection , 2005, Infection and Immunity.

[20]  A. Camilli,et al.  Transcriptome and Phenotypic Responses of Vibrio cholerae to Increased Cyclic di-GMP Level , 2006, Journal of bacteriology.

[21]  C. Notredame,et al.  Tcoffee add igs: a web server for computing, evaluating and combining multiple sequence alignments , 2003, Nucleic Acids Res..

[22]  C. Cambillau,et al.  The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids , 2006, FEBS letters.

[23]  W. Brown,et al.  Nucleotide sequence of the LuxA and LuxB genes of the bioluminescent marine bacterium Vibrio fischeri. , 1988, Nucleic acids research.

[24]  A. Touhami,et al.  Contribution of Type IV Pili to the Virulence of Aeromonas salmonicida subsp. salmonicida in Atlantic Salmon (Salmo salar L.) , 2008, Infection and Immunity.

[25]  Neil D. Rawlings,et al.  MEROPS: the peptidase database , 2009, Nucleic Acids Res..

[26]  G. Schoolnik,et al.  Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[27]  S. Salzberg,et al.  DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae , 2000, Nature.

[28]  G. Sharples,et al.  VceR regulates the vceCAB drug efflux pump operon of Vibrio cholerae by alternating between mutually exclusive conformations that bind either drugs or promoter DNA. , 2005, Journal of molecular biology.

[29]  T. Tsuchiya,et al.  NorM of Vibrio parahaemolyticus Is an Na+-Driven Multidrug Efflux Pump , 2000, Journal of bacteriology.

[30]  Masahira Hattori,et al.  Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae , 2003, The Lancet.

[31]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[32]  Finbarr Hayes,et al.  Toxins-Antitoxins: Plasmid Maintenance, Programmed Cell Death, and Cell Cycle Arrest , 2003, Science.

[33]  S. Campanaro,et al.  Life at Depth: Photobacterium profundum Genome Sequence and Expression Analysis , 2005, Science.

[34]  S. Hultgren,et al.  Bacterial pili: molecular mechanisms of pathogenesis. , 2000, Current opinion in microbiology.

[35]  M. Stanhope,et al.  Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition , 2007, Genome Biology.

[36]  J. Colmer-Hamood,et al.  VceR negatively regulates the vceCAB MDR efflux operon and positively regulates its own synthesis in Vibrio cholerae 569B. , 2007, Canadian journal of microbiology.

[37]  Susan M. Butler,et al.  Host-induced epidemic spread of the cholera bacterium , 2002, Nature.

[38]  G. Valle,et al.  Large-Scale Transposon Mutagenesis of Photobacterium profundum SS9 Reveals New Genetic Loci Important for Growth at Low Temperature and High Pressure , 2007, Journal of bacteriology.

[39]  Igor B. Zhulin,et al.  Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors , 2007, Proceedings of the National Academy of Sciences.

[40]  G. Schoolnik,et al.  Genomic and Phenotypic Diversity of Coastal Vibrio cholerae Strains Is Linked to Environmental Factors , 2007, Applied and Environmental Microbiology.

[41]  F. Yildiz,et al.  Identification and Characterization of Cyclic Diguanylate Signaling Systems Controlling Rugosity in Vibrio cholerae , 2008, Journal of bacteriology.

[42]  J. Sexton,et al.  Identification of an Operon Required for Ferrichrome Iron Utilization in Vibrio cholerae , 2000, Journal of bacteriology.

[43]  J. Fralick,et al.  Isolation and characterization of a putative multidrug resistance pump from Vibrio cholerae , 1998, Molecular microbiology.

[44]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[45]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[46]  Nick V Grishin,et al.  A comprehensive update of the sequence and structure classification of kinases , 2015 .

[47]  Narmada Thanki,et al.  CDD: a conserved domain database for interactive domain family analysis , 2006, Nucleic Acids Res..

[48]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[49]  Julian Parkhill,et al.  The genome sequence of the fish pathogen Aliivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay , 2008, BMC Genomics.

[50]  W. Goldman,et al.  Microbial Factor-Mediated Development in a Host-Bacterial Mutualism , 2004, Science.

[51]  Giorgio Valle,et al.  A global gene evolution analysis on Vibrionaceae family using phylogenetic profile , 2007, BMC Bioinformatics.

[52]  R. Gunsalus,et al.  Anaerobic respiratory growth of Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi with trimethylamine N-oxide, nitrate and fumarate: ecological implications. , 2000, Environmental microbiology.

[53]  D. Gevers,et al.  Gene duplication and biased functional retention of paralogs in bacterial genomes. , 2004, Trends in microbiology.