Aeroservoelastic design definition of a 20 MW common research wind turbine model

Wind turbine upscaling is motivated by the fact that larger machines can achieve lower levelized cost of energy. However, there are several fundamental issues with the design of such turbines, and there is little public data available for large wind turbine studies. To address this need, we develop a 20 MW common research wind turbine design that is available to the public. Multidisciplinary design optimization is used to define the aeroservoelastic design of the rotor and tower subject to the following constraints: blade-tower clearance, structural stresses, modal frequencies, tip-speed and fatigue damage at several sections of the tower and blade. For the blade, the design variables include blade length, twist and chord distribution, structural thicknesses distribution and rotor speed at the rated. The tower design variables are the height, and the diameter distribution in the vertical direction. For the other components, mass models are employed to capture their dynamic interactions. The associated cost of these components is obtained by using cost models. The design objective is to minimize the levelized cost of energy. The results of this research show the feasibility of a 20 MW wind turbine and provide a model with the corresponding data for wind energy researchers to use in the investigation of different aspects of wind turbine design and upscaling. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  Kevin Cox,et al.  Structural Design and Analysis of a 10MW Wind Turbine Blade , 2012 .

[2]  T. Ashuri,et al.  A non-linear upscaling approach for wind turbines blades based on stresses , 2011 .

[3]  Anders Yde,et al.  Light Rotor: The 10-MW reference wind turbine , 2012 .

[4]  T. Ashuri,et al.  Influence of Nonlinear Irregular Waves on the Fatigue Loads of an Offshore Wind Turbine , 2012 .

[5]  Joaquim R. R. A. Martins,et al.  Aerostructural Shape Optimization of Wind Turbine Blades Considering Site-Specic Winds , 2008 .

[6]  Michael Muskulus The Full-height Lattice Tower Concept , 2012 .

[7]  Peter Fuglsang,et al.  Site-Specific Design Optimization of 1.5–2.0 MW Wind Turbines , 2001 .

[8]  R. Poore,et al.  Alternative Design Study Report: WindPACT Advanced Wind Turbine Drive Train Designs Study; November 1, 2000 -- February 28, 2002 , 2003 .

[9]  J. M. Rotter,et al.  Buckling of thin metal shells , 2004 .

[10]  Joaquim R. R. A. Martins,et al.  Multidisciplinary design optimization: A survey of architectures , 2013 .

[11]  Jonathan A. Lynch,et al.  Northern Power Systems WindPACT Drive Train Alternative Design Study Report; Period of Performance: April 12, 2001 to January 31, 2005 , 2004 .

[12]  Dayton A. Griffin,et al.  WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor , 2001 .

[13]  M. L. Buhl,et al.  TurbSim User's Guide: Revised February 2007 for Version 1.21 , 2007 .

[14]  Joaquim R. R. A. Martins,et al.  Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes , 2012, Structural and Multidisciplinary Optimization.

[15]  Yaoyu Li,et al.  Wind turbine aerodynamics performance degradation and its mitigation via Extremum seeking controls , 2016 .

[16]  T. Ashuri,et al.  An Analytical Model to Extract Wind Turbine Blade Structural Properties for Optimization and Up-scaling Studies , 2010 .

[17]  Subhamoy Bhattacharya,et al.  Buckling considerations in pile design , 2005 .

[18]  Daniel Griffith,et al.  Investigating the Effects of Flatback Airfoils and Blade Slenderness on Large Wind Turbine Blades. , 2014 .

[19]  Joaquim R. R. A. Martins,et al.  Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy , 2014 .

[20]  T. Ashuri,et al.  Controller Design Automation for Aeroservoelastic Design Optimization of Wind Turbines , 2010 .

[21]  Niels N. Sørensen,et al.  Comprehensive Aerodynamic Analysis of a 10 MW Wind Turbine Rotor Using 3D CFD , 2014 .

[22]  David Greiner,et al.  Wind blade chord and twist angle optimization using genetic algorithms , 2006 .

[23]  José Mario Martínez,et al.  Improving ultimate convergence of an augmented Lagrangian method , 2008, Optim. Methods Softw..

[24]  T. Ashuri,et al.  Integrated Multidisciplinary Constrained Optimization of Offshore Support Structures , 2014 .

[25]  W. Engels,et al.  Upwind 20 MW Wind Turbine Pre-Design , 2011 .

[26]  M. Selig,et al.  A 3-D stall-delay model for horizontal axis wind turbine performance prediction , 1998 .

[27]  S. Report The SNL100-01 Blade: Carbon Design Studies for the Sandia 100-meter Blade , 2013 .

[28]  Jason Jonkman,et al.  FAST User's Guide , 2005 .

[29]  Sigrid Ringdalen Vatne Aeroelastic Instability and Flutter for a 10 MW Wind Turbine , 2011 .

[30]  Kevin J. Maki,et al.  System design of a wind turbine using a multi-level optimization approach , 2012 .

[31]  D. A. Shafer,et al.  WindPACT Turbine Design Scaling Studies: Technical Area 4 -- Balance-of-Station Cost , 2001 .

[32]  Wang Xudong,et al.  Shape Optimization of Wind Turbine Blades , 2009 .

[33]  P. J. Eecen,et al.  Offshore Wind Atlas of the Dutch part of the North Sea , 2011 .

[34]  T. Ashuri,et al.  Review of design concepts, methods and considerations of offshore wind turbines , 2007 .

[35]  Sandeep Singh Klair Design of Nacelle and Rotor Hub for NOWITECH 10MW Reference Turbine , 2013 .

[36]  R. Digumarthi,et al.  An Assessment of Approximate Modeling of Aerodynamic Loads on the UAE Rotor , 2003 .

[37]  G.A.M. van Kuik,et al.  THE APPLICATION OF SCALING RULES IN UP-SCALING AND MARINISATION OF A WIND TURBINE , 2001 .

[38]  Igor Rychlik,et al.  Rainflow analysis: Markov method , 1993 .

[39]  Kristian Opsahl Bredesen Design of Nacelle and Yaw Bearing for NOWITECH 10 MW Reference Turbine , 2014 .

[40]  W. A. Timmer,et al.  Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils , 2003 .

[41]  T. Ashuri,et al.  Size effect on wind turbine blade's design drivers , 2008 .

[42]  D. C. Janetzke,et al.  Theoretical and experimental power from large horizontal-axis wind turbines , 1982 .

[43]  Ole Gunnar Dahlhaug,et al.  Rotor Design For a 10 MW Offshore Wind Turbine , 2011 .

[44]  A P Schaffarczyk,et al.  The effect of roughness at high Reynolds numbers on the performance of aerofoil DU 97‐W‐300Mod , 2004 .

[45]  K. Smith WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor and Blade Logistics , 2001 .

[46]  K. Y. Maalawi,et al.  A practical approach for selecting optimum wind rotors , 2003 .

[47]  J. G. Leishman,et al.  A Semi-Empirical Model for Dynamic Stall , 1989 .

[48]  M. Hand,et al.  Wind Turbine Design Cost and Scaling Model , 2006 .

[49]  S. Report,et al.  The Sandia 100-meter All-glass Baseline Wind Turbine Blade: SNL100-00 , 2011 .

[50]  W. E. De Vries,et al.  Final report WP 4.2: Support Structure Concepts for Deep Water Sites: Deliverable D4.2.8 (WP4: offshore foundations and support structures) , 2011 .

[51]  Claude Fleury,et al.  CONLIN: An efficient dual optimizer based on convex approximation concepts , 1989 .

[52]  T. Ashuri,et al.  Development and validation of a computational model for design analysis of a novel marine turbine , 2013 .

[53]  Daniel Griffith The SNL100-02 blade : , 2013 .

[54]  B. Jonkman,et al.  TurbSim User's Guide , 2005 .

[55]  Michael S. Selig,et al.  Downwind Pre-Aligned Rotor for a 13.2 MW Wind Turbine , 2015 .

[56]  T. Ashuri,et al.  Beyond Classical Upscaling: Integrated Aeroservoelastic Design and Optimization of Large Offshore Wind Turbines , 2012 .

[57]  C. Lindenburg,et al.  Aero-elastic modelling of the DOWEC 6 MW pre-design in PHATAS , 2003 .

[58]  J. van der Tempel,et al.  Design of support structures for offshore wind turbines , 2006 .

[59]  Marshall L. Buhl CRUNCH USER'S GUIDE , 2001 .