Abstract Voronoi Diagrams from Closed Bisecting Curves

We present the first algorithm for constructing abstract Voronoi diagrams from bisectors that are unbounded or closed Jordan curves. It runs in expected O(s2nlog(max{s,n}) ∑i=2nm i/i) many steps and O(∑i=3nm i) space, where n is the number of sites, mi denotes the average number of faces (connected components) per Voronoi region in any diagram of a subset of i sites, and s is the maximum number of intersection points between any two related bisectors.

[1]  Kurt Mehlhorn,et al.  Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..

[2]  Joachim Gudmundsson,et al.  A fast algorithm for data collection along a fixed track , 2014, Theor. Comput. Sci..

[3]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[4]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[5]  Ioannis Z. Emiris,et al.  The Predicates for the Exact Voronoi Diagram of Ellipses under the Euclidiean Metric , 2008, Int. J. Comput. Geom. Appl..

[6]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[7]  Rolf Klein,et al.  Abstract Voronoi diagrams revisited , 2009, Comput. Geom..

[8]  Ngoc-Minh Lê,et al.  Abstract Voronoi diagram in 3-space , 2004, J. Comput. Syst. Sci..

[9]  Otfried Cheong,et al.  The Voronoi Diagram of Curved Objects , 2005, Discret. Comput. Geom..

[10]  Franz Aurenhammer,et al.  An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..

[11]  Kurt Mehlhorn,et al.  Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..

[12]  Franz Aurenhammer,et al.  Quickest Paths, Straight Skeletons, and the City Voronoi Diagram , 2004, Discret. Comput. Geom..

[13]  Michael T. Goodrich,et al.  Voronoi diagrams for convex polygon-offset distance functions , 2001, Discret. Comput. Geom..

[14]  Hazel Everett,et al.  Farthest-polygon Voronoi diagrams , 2007, Comput. Geom..

[15]  Kurt Mehlhorn,et al.  Furthest Site Abstract Voronoi Diagrams , 2001, Int. J. Comput. Geom. Appl..