Evidence for long-living charge carriers in electrically biased low-temperature-grown GaAs photoconductive switches

Low-temperature-grown GaAs continues to be one of the most important materials of ultrafast optoelectronics. Little is known, however, about the recombination dynamics of photogenerated charge carriers under the influence of an applied electric field, and it has remained unclear to what extent biased photoswitches exhibit field screening effects. Here, the authors investigate the screening in biased few-micrometer-sized photoconductive gaps quantitatively and find that it can amount to tens of percent of the applied field. They find that a subgroup of the photogenerated carriers recombines on an unexpectedly long excitation-density-dependent time scale of nanoseconds to tens of nanoseconds.

[1]  M. Tani,et al.  Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers , 2005 .

[2]  Jean-Louis Coutaz,et al.  Non-stoichiometric semiconductor materials for terahertz optoelectronics applications , 2005 .

[3]  H. Gotoh,et al.  Systematic pump-probe terahertz wave emission spectroscopy of a photoconductive antenna fabricated on low-temperature grown GaAs , 2004 .

[4]  K. Siebert,et al.  Field Screening in Low-Temperature-Grown GaAs Photoconductive Antennas , 2004 .

[5]  Ci-Ling Pan,et al.  THz radiation emission properties of multienergy arsenic-ion-implanted GaAs and semi-insulating GaAs based photoconductive antennas , 2003, Journal of Applied Physics.

[6]  K. Siebert,et al.  Continuous-wave all-optoelectronic terahertz imaging , 2002 .

[7]  T. Löffler,et al.  Free-carrier dynamics in low-temperature-grown GaAs at high excitation densities investigated by time-domain terahertz spectroscopy , 2002 .

[8]  Andrew M. Weiner,et al.  High-power narrow-band terahertz generation using large-aperture photoconductors , 1999 .

[9]  U. Keller,et al.  29 GHz modelocked miniature Nd:YVO/sub 4/ laser , 1999 .

[10]  Julien Nagle,et al.  Photoconductivity investigation of the electron dynamics in GaAs grown at low temperature , 1999 .

[11]  P. Grenier,et al.  Subband gap carrier dynamics in low-temperature-grown GaAs , 1997 .

[12]  Rudolf Hey,et al.  Application of liftoff low‐temperature‐grown GaAs on transparent substrates for THz signal generation , 1996 .

[13]  Michael R. Melloch,et al.  The role of point defects and arsenic precipitates in carrier trapping and recombination in low‐temperature grown GaAs , 1996 .

[14]  R. Jacobsen,et al.  Interpretation of photocurrent correlation measurements used for ultrafast photoconductive switch characterization , 1996 .

[15]  C. L. Dennis,et al.  Photomixing up to 3.8 THz in low‐temperature‐grown GaAs , 1995 .

[16]  Stuart D. Brorson,et al.  Ultrafast carrier trapping and slow recombination in ion‐bombarded silicon on sapphire measured via THz spectroscopy , 1994 .

[17]  rensen,et al.  Ultrafast local field dynamics in photoconductive THz antennas , 1993 .

[18]  M. Hollis,et al.  Picosecond GaAs-Based Photoconductive Optoelectronic Detectors , 1989, OSA Proceedings on Picosecond Electronics and Optoelectronics.

[19]  M. Manfra,et al.  New MBE buffer used to eliminate backgating in GaAs MESFETs , 1988, IEEE Electron Device Letters.