Genetic determinants of risk and survival in pulmonary arterial hypertension

Background Pulmonary arterial hypertension (PAH) is a rare disorder leading to premature death. Rare genetic variants contribute to disease etiology but the contribution of common genetic variation to disease risk and outcome remains poorly characterized. Methods We performed two separate genome-wide association studies of PAH using data across 11,744 European-ancestry individuals (including 2,085 patients), one with genotypes from 5,895 whole genome sequences and another with genotyping array data from 5,849 further samples. Cross-validation of loci reaching genome-wide significance was sought by meta-analysis. We functionally annotated associated variants and tested associations with duration of survival. Findings A locus at HLA-DPA1/DPB1 within the class II major histocompatibility (MHC) region and a second near SOX17 were significantly associated with PAH. The SOX17 locus contained two independent signals associated with PAH. Functional and epigenomic data indicate that the risk variants near SOX17 alter gene regulation via an enhancer active in endothelial cells. PAH risk variants determined haplotype-specific enhancer activity and CRISPR-inhibition of the enhancer reduced SOX17 expression. Analysis of median survival showed that PAH patients with two copies of the HLA-DPA1/DPB1 risk variant had a two-fold difference (>16 years versus 8 years), compared to patients homozygous for the alternative allele. Interpretation We have found that common genetic variation at loci in HLA-DPA1/DPB1 and an enhancer near SOX17 are associated with PAH. Impairment of Sox17 function may be more common in PAH than suggested by rare mutations in SOX17. Allelic variation at HLA-DPB1 stratifies PAH patients for survival following diagnosis, with implications for future therapeutic trial design. Funding UK NIHR, BHF, UK MRC, Dinosaur Trust, NIH/NHLBI, ERS, EMBO, Wellcome Trust, EU, AHA, ACClinPharm, Netherlands CVRI, Dutch Heart Foundation, Dutch Federation of UMC, Netherlands OHRD and RNAS, German DFG, German BMBF, APH Paris, Inserm, Université Paris-Sud, and French ANR.

Lisa J. Martin | Ferhaan Ahmad | W. Ouwehand | R. Kittles | D. Roden | M. Humbert | W. Seeger | D. Trégouët | M. Germain | P. Amouyel | I. Prokopenko | L. Harbaum | Q. Waisfisz | A. Franke | P. Corris | M. Haimel | M. Bleda | M. Kaakinen | M. Laudes | H. Ghofrani | C. Shaffer | S. Archer | J. Garcia | S. Debette | S. Gräf | R. Trembath | K. Marsolo | J. Harley | J. Karnes | R. Simms | R. Benza | D. Badesch | A. Frost | S. Nathan | S. Ghio | N. Morrell | D. Ivy | B. Girerd | O. Sitbon | D. Montani | Haiyang Tang | M. Eyries | F. Soubrier | J. Wharton | M. Wilkins | H. Gall | L. Scelsi | M. Simon | Inês Cebola | J. Ferrer | J. Knight | T. Lahm | D. Kiely | E. Austin | H. Olschewski | C. Rhodes | M. Newnham | R. Argula | E. Swietlik | T. Thenappan | N. Hill | R. Oudiz | R. Schilz | H. Bogaard | R. Frantz | F. Torres | G. Kovacs | A. Olschewski | T. Fortin | L. Howard | W. Nichols | G. Elliott | R. Condliffe | K. Hanscombe | C. Danesino | A. Ulrich | K. Batai | A. Vonk-Noordegraaf | R. Hirsch | R. Machado | M. Chakinala | S. Wort | A. Desai | E. Rosenzweig | J. Klinger | L. Southgate | J. Gibbs | C. Hadinnapola | C. Treacy | C. Church | A. Houweling | S. Moledina | A. Peacock | J. Pepke-Żaba | J. Suntharalingam | M. Toshner | A. Lawrie | Joe G. N. Garcia | R. Ross | G. Saydain | C. Burger | C. Barnett | J. Elwing | I. Robbins | M. Pauciulo | J. Aman | Hua He | D. Yung | A. Arora | K. Lutz | N. Bhatt | J. Wilt | J. Coghlan | J. White | R. Walter | S. Bakshi | Zia Rehman | Alexander Tchourbanov | Anna K. Walsworth | J. Pepke‐Zaba | J. Pepke-Zaba | Amit Arora | Ken Batai

[1]  J. Hampe,et al.  IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans[S] , 2015, Journal of Lipid Research.

[2]  A. Malik,et al.  SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34+ Progenitor Cells , 2017, Circulation.

[3]  T. Basta,et al.  SOX7 and SOX18 are essential for cardiogenesis in Xenopus , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[4]  Yoshiakira Kanai,et al.  Depletion of definitive gut endoderm in Sox17-null mutant mice. , 2002, Development.

[5]  P. Thurner,et al.  Sox17 is required for normal pulmonary vascular morphogenesis. , 2014, Developmental biology.

[6]  D. Stainier,et al.  A molecular pathway leading to endoderm formation in zebrafish , 1999, Current Biology.

[7]  D. Irwin,et al.  Aberrant Chloride Intracellular Channel 4 Expression Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension , 2014, Circulation.

[8]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[9]  J. Knight,et al.  Major histocompatibility complex genomics and human disease. , 2013, Annual review of genomics and human genetics.

[10]  Dana C Crawford,et al.  Pitfalls of merging GWAS data: lessons learned in the eMERGE network and quality control procedures to maintain high data quality , 2011, Genetic epidemiology.

[11]  M. Humbert,et al.  Pulmonary arterial hypertension: epidemiology and registries. , 2013, Journal of the American College of Cardiology.

[12]  M. Humbert,et al.  A genome-wide association analysis identifies PDE1A|DNAJC10 locus on chromosome 2 associated with idiopathic pulmonary arterial hypertension in a Japanese population , 2017, Oncotarget.

[13]  Chulhee Choi,et al.  SoxF Transcription Factors Are Positive Feedback Regulators of VEGF Signaling. , 2016, Circulation research.

[14]  B. Nemery,et al.  Susceptibility to hard metal lung disease is strongly associated with the presence of glutamate 69 in HLA‐DPβ chain , 1997, European journal of immunology.

[15]  L. Newman,et al.  Beryllium presentation to CD4+ T cells underlies disease-susceptibility HLA-DP alleles in chronic beryllium disease. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Tim J. Carver,et al.  CHiCP: a web-based tool for the integrative and interactive visualization of promoter capture Hi-C datasets , 2016, Bioinform..

[17]  R. Schwartz,et al.  Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells , 2007, Proceedings of the National Academy of Sciences.

[18]  大西 健太 Cincinnati Children’s Hospital での海外アドバンス実習を終えて , 2015 .

[19]  R. Lechler,et al.  HLA-DP Allele-Specific T Cell Responses to Beryllium Account for DP-Associated Susceptibility to Chronic Beryllium Disease1 , 2001, The Journal of Immunology.

[20]  M. Amicosante,et al.  Functional analysis of HLA-DP polymorphism: a crucial role for DPbeta residues 9, 11, 35, 55, 56, 69 and 84-87 in T cell allorecognition and peptide binding. , 2003, International immunology.

[21]  Reedik Mägi,et al.  GWAMA: software for genome-wide association meta-analysis , 2010, BMC Bioinformatics.

[22]  Buhm Han,et al.  Imputing Amino Acid Polymorphisms in Human Leukocyte Antigens , 2013, PloS one.

[23]  C. Xiong,et al.  Prostanoid therapy for pulmonary arterial hypertension: a meta-analysis of survival outcomes , 2013, European Journal of Clinical Pharmacology.

[24]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[25]  Simon Gibbs,et al.  2015 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. , 2016, Revista espanola de cardiologia.

[26]  W. Chung,et al.  Genome-wide association analysis identifies a susceptibility locus for pulmonary arterial hypertension , 2013, Nature Genetics.

[27]  S. Groshong,et al.  Modern age pathology of pulmonary arterial hypertension. , 2012, American journal of respiratory and critical care medicine.

[28]  Jake K. Byrnes,et al.  Bayesian refinement of association signals for 14 loci in 3 common diseases , 2012, Nature Genetics.

[29]  Shane A. McCarthy,et al.  Reference-based phasing using the Haplotype Reference Consortium panel , 2016, Nature Genetics.

[30]  E. J. Smith A children's hospital in a medical center , 1947 .

[31]  D. Roden,et al.  A genome-wide association study of heparin-induced thrombocyto - penia using an electronic medical record , 2014, Thrombosis and Haemostasis.

[32]  中山 優吏佳 Cincinnati Children’s Hospital Medical Centerでの海外実習を終えて , 2017 .

[33]  S. Morrison,et al.  Sox17 Dependence Distinguishes the Transcriptional Regulation of Fetal from Adult Hematopoietic Stem Cells , 2007, Cell.

[34]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[35]  C. Hudson,et al.  Xsox17alpha and -beta mediate endoderm formation in Xenopus. , 1997, Cell.

[36]  Ting Wang,et al.  The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions , 2017, Genome Biology.

[37]  S. Mallal,et al.  Comparison of HLA allelic imputation programs , 2017, PloS one.

[38]  W. Ouwehand,et al.  Novel causative genes for heritable pulmonary arterial hypertension , 2017, bioRxiv.

[39]  P. Grambsch,et al.  A Package for Survival Analysis in S , 1994 .

[40]  Stephen C. J. Parker,et al.  The genetic architecture of type 2 diabetes , 2016, Nature.

[41]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[42]  U. Nöthlings,et al.  [PopGen. A population-based biobank with prospective follow-up of a control group]. , 2012, Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz.

[43]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[44]  L. Richeldi,et al.  HLA-DPB1 glutamate 69: a genetic marker of beryllium disease. , 1993, Science.

[45]  Annette Lee,et al.  Identification of Novel Genetic Markers Associated with Clinical Phenotypes of Systemic Sclerosis through a Genome-Wide Association Strategy , 2011, PLoS genetics.

[46]  Jerzy K. Kulski,et al.  The HLA genomic loci map: expression, interaction, diversity and disease , 2009, Journal of Human Genetics.

[47]  D. Roden,et al.  Development of a Large‐Scale De‐Identified DNA Biobank to Enable Personalized Medicine , 2008, Clinical pharmacology and therapeutics.

[48]  Stephan Ripke,et al.  Association of granulomatosis with polyangiitis (Wegener's) with HLA-DPB1*04 and SEMA6A gene variants: evidence from genome-wide analysis. , 2013, Arthritis and rheumatism.

[49]  Henning Gall,et al.  Identification of rare sequence variation underlying heritable pulmonary arterial hypertension , 2018, Nature Communications.

[50]  D. Roden,et al.  Biobanks and Electronic Medical Records: Enabling Cost-Effective Research , 2014, Science Translational Medicine.

[51]  N. Voelkel,et al.  Formation of Plexiform Lesions in Experimental Severe Pulmonary Arterial Hypertension , 2010, Circulation.

[52]  C. Hudson,et al.  Xsox17α and -β Mediate Endoderm Formation in Xenopus , 1997, Cell.

[53]  G. Koh,et al.  Notch Pathway Targets Proangiogenic Regulator Sox17 to Restrict Angiogenesis , 2014, Circulation research.

[54]  R. Holman,et al.  Vascular Factors and Risk of Dementia: Design of the Three-City Study and Baseline Characteristics of the Study Population , 2003, Neuroepidemiology.

[55]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[56]  G. Inman,et al.  TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling , 2017, Nature Communications.

[57]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.