Ranking Networks

Latent space models for network formation assume that nodes possess latent attributes that determine their propensity to connect. We propose a new model for network formation, ranking networks, in which these attributes are rankings over some space of alternatives. Such rankings may reflect user preferences, relevance/quality judgements, etc., while ranking networks capture correlations of, say, user preferences across a social network. We present preliminary theoretical and empirical analyses of structural properties of such networks, and develop algorithmic approximations to help efficiently predict these properties. Empirical results demonstrate the quality of these approximations.

[1]  C. L. Mallows NON-NULL RANKING MODELS. I , 1957 .

[2]  Paul Erdös,et al.  On random graphs, I , 1959 .

[3]  M. Fligner,et al.  Distance Based Ranking Models , 1986 .

[4]  BERNARD M. WAXMAN,et al.  Routing of multipoint connections , 1988, IEEE J. Sel. Areas Commun..

[5]  P. Diaconis Group representations in probability and statistics , 1988 .

[6]  J. Marden Analyzing and Modeling Rank Data , 1996 .

[7]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[8]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[9]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[10]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[11]  R. Pastor-Satorras,et al.  Class of correlated random networks with hidden variables. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[13]  A. Arenas,et al.  Models of social networks based on social distance attachment. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Lise Getoor,et al.  Link mining: a survey , 2005, SKDD.

[15]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[16]  Duncan J. Watts,et al.  The Structure and Dynamics of Networks: (Princeton Studies in Complexity) , 2006 .

[17]  Edward R. Scheinerman,et al.  Random Dot Product Graph Models for Social Networks , 2007, WAW.

[18]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[19]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[20]  Marián Boguñá,et al.  Self-similarity of complex networks and hidden metric spaces , 2007, Physical review letters.

[21]  Lise Getoor,et al.  Collective Classification in Network Data , 2008, AI Mag..

[22]  Sofus A. Macskassy Using graph-based metrics with empirical risk minimization to speed up active learning on networked data , 2009, KDD.

[23]  Lise Getoor,et al.  Active Learning for Networked Data , 2010, ICML.

[24]  Christos Faloutsos,et al.  Kronecker Graphs: An Approach to Modeling Networks , 2008, J. Mach. Learn. Res..

[25]  Linyuan Lu,et al.  Link Prediction in Complex Networks: A Survey , 2010, ArXiv.

[26]  Jure Leskovec,et al.  Multiplicative Attribute Graph Model of Real-World Networks , 2010, Internet Math..

[27]  Marc Barthelemy,et al.  Spatial Networks , 2010, Encyclopedia of Social Network Analysis and Mining.

[28]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[29]  Craig Boutilier,et al.  Learning Mallows Models with Pairwise Preferences , 2011, ICML.

[30]  Jure Leskovec,et al.  Modeling Social Networks with Node Attributes using the Multiplicative Attribute Graph Model , 2011, UAI.

[31]  Amin Karbasi,et al.  Content Search through Comparisons , 2011, ICALP.

[32]  Tie-Yan Liu,et al.  Learning to Rank for Information Retrieval , 2011 .

[33]  Jure Leskovec,et al.  Latent Multi-group Membership Graph Model , 2012, ICML.

[34]  Chris Arney,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World (Easley, D. and Kleinberg, J.; 2010) [Book Review] , 2013, IEEE Technology and Society Magazine.