A process intensification synthesis framework for the design of extractive separation systems with material selection

[1]  Gintaras V. Reklaitis,et al.  Process systems engineering - The generation next? , 2021, Comput. Chem. Eng..

[2]  E. Pistikopoulos,et al.  Toward an Envelope of Design Solutions for Combined/Intensified Reaction/Separation Systems , 2020, Industrial & Engineering Chemistry Research.

[3]  Efstratios N. Pistikopoulos,et al.  Circular Economy - A challenge and an opportunity for Process Systems Engineering , 2020, Comput. Chem. Eng..

[4]  Mirko Skiborowski,et al.  Efficient optimization-based design of energy-integrated azeotropic distillation processes , 2020, Comput. Chem. Eng..

[5]  Rafiqul Gani,et al.  Integrated ionic liquid and process design involving azeotropic separation processes , 2019, Chemical Engineering Science.

[6]  Andrzej Stankiewicz,et al.  110th Anniversary: The Missing Link Unearthed: Materials and Process Intensification , 2019, Industrial & Engineering Chemistry Research.

[7]  Ignasi Palou-Rivera,et al.  The RAPID Manufacturing Institute – Reenergizing US efforts in process intensification and modular chemical processing , 2019, Chemical Engineering and Processing - Process Intensification.

[8]  Rafiqul Gani,et al.  Optimal Solvent Design for Extractive Distillation Processes: A Multiobjective Optimization-Based Hierarchical Framework , 2019, Industrial & Engineering Chemistry Research.

[9]  Andreas Jupke,et al.  Model‐based equipment design for the biphasic production of 5‐hydroxymethylfurfural in a tubular reactor , 2020 .

[10]  Efstratios N. Pistikopoulos,et al.  Synthesis of Operable Process Intensification Systems—Steady-State Design with Safety and Operability Considerations , 2019, Industrial & Engineering Chemistry Research.

[11]  A. A. Kiss,et al.  Reactive Distillation: Stepping Up to the Next Level of Process Intensification , 2018, Industrial & Engineering Chemistry Research.

[12]  Efstratios N. Pistikopoulos,et al.  An overview of process systems engineering approaches for process intensification: State of the art , 2018, Chemical Engineering and Processing - Process Intensification.

[13]  F. Keil Process intensification , 2017 .

[14]  Jianping Li,et al.  Systematic process intensification using building blocks , 2017, Comput. Chem. Eng..

[15]  Vasilios I. Manousiouthakis,et al.  Process intensification of reactive separator networks through the IDEAS conceptual framework , 2017, Comput. Chem. Eng..

[16]  Rafiqul Gani,et al.  A computer-aided software-tool for sustainable process synthesis-intensification , 2017, Comput. Chem. Eng..

[17]  I. Chien,et al.  Critical Assessment of Using an Ionic Liquid as Entrainer via Extractive Distillation , 2017 .

[18]  Biaohua Chen,et al.  Extractive Distillation with a Mixture of Organic Solvent and Ionic Liquid as Entrainer , 2014 .

[19]  Zhigang Lei,et al.  Extractive distillation with ionic liquids: A review , 2014 .

[20]  Ignacio E. Grossmann,et al.  An Approach for Solvent Selection in Extractive Distillation Systems Including Safety Considerations , 2014 .

[21]  David Reay,et al.  Chapter 2 – Process Intensification – An Overview , 2013 .

[22]  Antonio Flores-Tlacuahuac,et al.  Simultaneous Optimal Design of an Extractive Column and Ionic Liquid for the Separation of Bioethanol–Water Mixtures , 2012 .

[23]  Andrzej Stankiewicz,et al.  Opportunities and challenges for process control in process intensification , 2012 .

[24]  Peter L. Douglas,et al.  Design of extractive distillation for the separation of close-boiling mixtures: Solvent selection and column optimization , 2011, Comput. Chem. Eng..

[25]  Tom Van Gerven,et al.  Structure, energy, synergy, time - the fundamentals of Process Intensification , 2009 .

[26]  Henrik Hahn,et al.  An industrial view of process intensification , 2009 .

[27]  W. Geng,et al.  Selection of ionic liquids as entrainers for separation of (water + ethanol) , 2008 .

[28]  G. J. Harmsen,et al.  Reactive distillation: The front-runner of industrial process intensification - A full review of commercial applications, research, scale-up, design and operation , 2007 .

[29]  Claire S. Adjiman,et al.  Design of solvents for optimal reaction rate constants , 2007 .

[30]  Patrick Linke,et al.  Efficient integration of optimal solvent and process design using molecular clustering , 2006 .

[31]  Efstratios N. Pistikopoulos,et al.  A framework for the synthesis of reactive absorption columns , 2006 .

[32]  Efstratios N. Pistikopoulos,et al.  Hybrid generalized modular/collocation framework for distillation column synthesis , 2006 .

[33]  Patrick Linke,et al.  Multiobjective molecular design for integrated process‐solvent systems synthesis , 2006 .

[34]  Robin D. Rogers,et al.  Ionic Liquids--Solvents of the Future? , 2003, Science.

[35]  Efstratios N. Pistikopoulos,et al.  Modular synthesis framework for combined separation/reaction systems , 2001 .

[36]  Antonis C. Kokossis,et al.  On the development of novel chemicals using a systematic optimisation approach. Part II. Solvent design , 2000 .

[37]  Rafiqul Gani,et al.  Design of environmentally benign processes: integration of solvent design and separation process synthesis , 1999 .

[38]  Efstratios N. Pistikopoulos,et al.  Modular representation synthesis framework for homogeneous azeotropic separation , 1999 .

[39]  Efstratios N. Pistikopoulos,et al.  Generalized modular representation framework for process synthesis , 1996 .

[40]  P. Seferlis,et al.  Optimization of distillation units using collocation models , 1994 .

[41]  Manfred Morari,et al.  Simulation of fractionation by orthogonal collocation , 1985 .

[42]  A. M. Geoffrion Generalized Benders decomposition , 1972 .