Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy

[1]  Nuha Mobarki,et al.  Antibiotic Resistance Crisis , 2019, International Journal of Medicine in Developing Countries.

[2]  K. Miyanaga,et al.  Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twort-like phages ɸSA012 and ɸSA039 , 2018, Applied Microbiology and Biotechnology.

[3]  Y. Doyon,et al.  Anti-CRISPR AcrIIa6 cubic form , 2018 .

[4]  Y. Doyon,et al.  Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins , 2018, Nature Communications.

[5]  F. Oechslin,et al.  Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy , 2018, Viruses.

[6]  R. Barrangou,et al.  Mining for novel bacterial defence systems , 2018, Nature Microbiology.

[7]  Elizabeth R. Wright,et al.  Vibrio cholerae Outer Membrane Vesicles Inhibit Bacteriophage Infection , 2018, Journal of bacteriology.

[8]  K. Makarova,et al.  DNA silencing by prokaryotic Argonaute proteins adds a new layer of defense against invading nucleic acids , 2018, FEMS microbiology reviews.

[9]  A. Buckling,et al.  Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity , 2018, Cell.

[10]  Rotem Sorek,et al.  Systematic discovery of antiphage defense systems in the microbial pangenome , 2018, Science.

[11]  T. Olszak,et al.  Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? , 2018, Applied Microbiology and Biotechnology.

[12]  J. Diallo,et al.  Does Treatment Order Matter? Investigating the Ability of Bacteriophage to Augment Antibiotic Activity against Staphylococcus aureus Biofilms , 2018, Front. Microbiol..

[13]  Kulbhushan Chaudhary BacteRiophage EXclusion (BREX): A novel anti‐phage mechanism in the arsenal of bacterial defense system , 2018, Journal of cellular physiology.

[14]  Y. Tanji,et al.  Bacteriophage ΦSA012 Has a Broad Host Range against Staphylococcus aureus and Effective Lytic Capacity in a Mouse Mastitis Model , 2018, Biology.

[15]  Alan R. Davidson,et al.  Anti-CRISPR: discovery, mechanism and function , 2017, Nature Reviews Microbiology.

[16]  S. Faruque,et al.  Analysis of the CRISPR-Cas system in bacteriophages active on epidemic strains of Vibrio cholerae in Bangladesh , 2017, Scientific Reports.

[17]  R. Sorek,et al.  DISARM is a widespread bacterial defence system with broad anti-phage activities , 2017, Nature Microbiology.

[18]  K. Miyanaga,et al.  Coevolution between Staphylococcus aureus isolated from mastitic milk and its lytic bacteriophage ΦSA012 in batch co-culture with serial transfer , 2017 .

[19]  M. Kutateladze,et al.  Phage Therapy in a 16-Year-Old Boy with Netherton Syndrome , 2017, Front. Med..

[20]  Brendan J. O’Hara,et al.  A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome , 2017, PLoS genetics.

[21]  M. Martí,et al.  Phage-inducible islands in the Gram-positive cocci , 2017, The ISME Journal.

[22]  G. O’Toole,et al.  Bacteria, Rev Your Engines: Stator Dynamics Regulate Flagellar Motility , 2017, Journal of bacteriology.

[23]  Dipali G. Sashital Prokaryotic Argonaute Uses an All-in-One Mechanism to Provide Host Defense. , 2017, Molecules and Cells.

[24]  Q. Ji,et al.  Rapid and Efficient Genome Editing in Staphylococcus aureus by Using an Engineered CRISPR/Cas9 System. , 2017, Journal of the American Chemical Society.

[25]  A. Marina,et al.  Convergent evolution of pathogenicity islands in helper cos phage interference , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[26]  Zonghui Yuan,et al.  Bacteria vs. Bacteriophages: Parallel Evolution of Immune Arsenals , 2016, Front. Microbiol..

[27]  K. Miyanaga,et al.  The Presence of Two Receptor-Binding Proteins Contributes to the Wide Host Range of Staphylococcal Twort-Like Phages , 2016, Applied and Environmental Microbiology.

[28]  C. Wolz,et al.  An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus , 2016, Scientific Reports.

[29]  Dominic Sauvageau,et al.  Host receptors for bacteriophage adsorption. , 2016, FEMS microbiology letters.

[30]  A. Peschel,et al.  An accessory wall teichoic acid glycosyltransferase protects Staphylococcus aureus from the lytic activity of Podoviridae , 2015, Scientific Reports.

[31]  Alan R. Davidson,et al.  Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins , 2015, Nature.

[32]  K. Seed Battling Phages: How Bacteria Defend against Viral Attack , 2015, PLoS pathogens.

[33]  M. Wiedmann,et al.  Selection and Characterization of Phage-Resistant Mutant Strains of Listeria monocytogenes Reveal Host Genes Linked to Phage Adsorption , 2015, Applied and Environmental Microbiology.

[34]  C. L. Ventola The antibiotic resistance crisis: part 1: causes and threats. , 2015, P & T : a peer-reviewed journal for formulary management.

[35]  R. Sorek,et al.  BREX is a novel phage resistance system widespread in microbial genomes , 2015, The EMBO journal.

[36]  M. Middelboe,et al.  Bacteriophage Resistance Mechanisms in the Fish Pathogen Flavobacterium psychrophilum: Linking Genomic Mutations to Changes in Bacterial Virulence Factors , 2014, Applied and Environmental Microbiology.

[37]  K. Ko,et al.  Phage-Encoded Colanic Acid-Degrading Enzyme Permits Lytic Phage Infection of a Capsule-Forming Resistant Mutant Escherichia coli Strain , 2014, Applied and Environmental Microbiology.

[38]  M. Jagannadham,et al.  Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. , 2014, Microbiology.

[39]  D. C. Swarts,et al.  The evolutionary journey of Argonaute proteins , 2014, Nature Structural &Molecular Biology.

[40]  L. Hansen,et al.  Combined Use of Bacteriophage K and a Novel Bacteriophage To Reduce Staphylococcus aureus Biofilm Formation , 2014, Applied and Environmental Microbiology.

[41]  M. Touchon,et al.  The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts , 2014, Nucleic acids research.

[42]  Georgios Belibasakis,et al.  Porphyromonas gingivalis , 2014, Virulence.

[43]  H. Neve,et al.  Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type , 2014, Front. Microbiol..

[44]  Stan J. J. Brouns,et al.  DNA-guided DNA interference by a prokaryotic Argonaute , 2014, Nature.

[45]  G. Salmond,et al.  A widespread bacteriophage abortive infection system functions through a Type IV toxin–antitoxin mechanism , 2014, Nucleic acids research.

[46]  F. Rohwer,et al.  Innate and acquired bacteriophage-mediated immunity , 2013, Bacteriophage.

[47]  H. Neve,et al.  X‐ray structure of a superinfection exclusion lipoprotein from phage TP‐J34 and identification of the tape measure protein as its target , 2013, Molecular microbiology.

[48]  S. Abedon,et al.  Phage cocktails and the future of phage therapy. , 2013, Future microbiology.

[49]  Kira S. Makarova,et al.  Comparative genomics of defense systems in archaea and bacteria , 2013, Nucleic acids research.

[50]  Rodolphe Barrangou,et al.  The Population and Evolutionary Dynamics of Phage and Bacteria with CRISPR–Mediated Immunity , 2013, PLoS genetics.

[51]  H. Neve,et al.  The Lactococcal Phages Tuc2009 and TP901-1 Incorporate Two Alternate Forms of Their Tail Fiber into Their Virions for Infection Specialization* , 2013, The Journal of Biological Chemistry.

[52]  Anni-Maria Örmälä,et al.  Phage therapy , 2013, Bacteriophage.

[53]  Alan R. Davidson,et al.  Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system , 2012, Nature.

[54]  S. Faruque,et al.  Phase Variable O Antigen Biosynthetic Genes Control Expression of the Major Protective Antigen and Bacteriophage Receptor in Vibrio cholerae O1 , 2012, PLoS pathogens.

[55]  T. Yonesaki,et al.  Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins , 2012, Molecular microbiology.

[56]  J. Gawor,et al.  Genomics of staphylococcal Twort-like phages--potential therapeutics of the post-antibiotic era. , 2012, Advances in virus research.

[57]  M. Kuehn,et al.  Contribution of bacterial outer membrane vesicles to innate bacterial defense , 2011, BMC Microbiology.

[58]  J. Iredell,et al.  Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. , 2011, Journal of medical microbiology.

[59]  A. Peschel,et al.  Wall Teichoic Acid-Dependent Adsorption of Staphylococcal Siphovirus and Myovirus , 2011, Journal of bacteriology.

[60]  Adi Stern,et al.  The phage‐host arms race: Shaping the evolution of microbes , 2011, BioEssays : news and reviews in molecular, cellular and developmental biology.

[61]  M. Kuehn,et al.  Biological functions and biogenesis of secreted bacterial outer membrane vesicles. , 2010, Annual review of microbiology.

[62]  A. Amoresano,et al.  Bacteriophage-Resistant Staphylococcus aureus Mutant Confers Broad Immunity against Staphylococcal Infection in Mice , 2010, PloS one.

[63]  Sylvain Moineau,et al.  Bacteriophage resistance mechanisms , 2010, Nature Reviews Microbiology.

[64]  J. Lindsay Genomic variation and evolution of Staphylococcus aureus. , 2010, International journal of medical microbiology : IJMM.

[65]  S. Abedon,et al.  Bacteriophage host range and bacterial resistance. , 2010, Advances in applied microbiology.

[66]  D. Ercolini,et al.  Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. , 2010, The Journal of infectious diseases.

[67]  K. Ochiai,et al.  Outer Membrane Vesicles of Helicobacter pylori TK1402 are Involved in Biofilm Formation , 2009, BMC Microbiology.

[68]  E. Koonin,et al.  Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements , 2009, Biology Direct.

[69]  Mathias Middelboe,et al.  Bacteriophages drive strain diversification in a marine Flavobacterium: implications for phage resistance and physiological properties. , 2009, Environmental microbiology.

[70]  Timothy C. Meredith,et al.  Late-Stage Polyribitol Phosphate Wall Teichoic Acid Biosynthesis in Staphylococcus aureus , 2008, Journal of bacteriology.

[71]  Philippe Horvath,et al.  Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus , 2007, Journal of bacteriology.

[72]  Stephen G. J. Smith,et al.  A molecular Swiss army knife: OmpA structure, function and expression. , 2007, FEMS microbiology letters.

[73]  S. Moineau,et al.  Abortive Infection Mechanisms and Prophage Sequences Significantly Influence the Genetic Makeup of Emerging Lytic Lactococcal Phages , 2006, Journal of bacteriology.

[74]  W. Doroszkiewicz,et al.  Rola bialek blony zewnetrznej w oddzialywaniach bakterii Gram-ujemnych z organizmem gospodarza , 2007 .

[75]  E. Bakker,et al.  The Escherichia coli MotAB proton channel unplugged. , 2006, Journal of molecular biology.

[76]  J. S. Godde,et al.  The Repetitive DNA Elements Called CRISPRs and Their Associated Genes: Evidence of Horizontal Transfer Among Prokaryotes , 2006, Journal of Molecular Evolution.

[77]  Hajime Unno,et al.  Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. , 2005, Journal of bioscience and bioengineering.

[78]  K. Dietz,et al.  Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. , 2005, The Journal of infectious diseases.

[79]  Toshikazu Tani,et al.  Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases , 2005, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[80]  Curt R. Fischer,et al.  The coexistence of Escherichia coli serotype O157:H7 and its specific bacteriophage in continuous culture. , 2004, FEMS microbiology letters.

[81]  Wolf-Dietrich Hardt,et al.  Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion , 2004, Microbiology and Molecular Biology Reviews.

[82]  Curt R. Fischer,et al.  Coevolution of Bacteriophage PP01 and Escherichia coli O157:H7 in Continuous Culture , 2003, Applied and Environmental Microbiology.

[83]  D. Graham,et al.  Helicobacter pylori infection in mice: Role of outer membrane proteins in colonization and inflammation. , 2002, Gastroenterology.

[84]  Curt R. Fischer,et al.  Amino acid alterations in Gp38 of host range mutants of PP01 and evidence for their infection of an ompC null mutant of Escherichia coli O157:H7. , 2002, FEMS microbiology letters.

[85]  C. Whitfield,et al.  Lipopolysaccharide endotoxins. , 2002, Annual review of biochemistry.

[86]  P. van Gelder,et al.  Structure and function of bacterial outer membrane proteins: barrels in a nutshell , 2000, Molecular microbiology.

[87]  T. Bickle,et al.  Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme. , 2000, Journal of molecular biology.

[88]  S. Moineau,et al.  AbiQ, an Abortive Infection Mechanism fromLactococcus lactis , 1998, Applied and Environmental Microbiology.

[89]  F. Repoila,et al.  Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin. , 1996, Journal of molecular biology.

[90]  D. Grenier,et al.  Porphyromonas gingivalis outer membrane vesicles promote bacterial resistance to chlorhexidine. , 1995, Oral microbiology and immunology.

[91]  L. Snyder Phage‐exclusion enzymes: a bonanza of biochemical and cell biology reagents? , 1995, Molecular microbiology.

[92]  D. Grenier,et al.  Protective effect of Porphyromonas gingivalis outer membrane vesicles against bactericidal activity of human serum , 1991, Infection and immunity.

[93]  H. Berg,et al.  The MotA protein of E. coli is a proton-conducting component of the flagellar motor , 1990, Cell.

[94]  U. Henning,et al.  The immunity (imm) gene of Escherichia coli bacteriophage T4 , 1989, Journal of virology.

[95]  K. M. Shaw,et al.  The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. , 1987, Journal of general microbiology.

[96]  L. Nd,et al.  Genetic characteristics of a new phage resistance trait in Streptomyces coelicolor A3(2) , 1982 .

[97]  H. Smith,et al.  Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. , 1982, Journal of general microbiology.

[98]  L. V. Valen,et al.  A new evolutionary law , 1973 .

[99]  H. Kowarzyk Structure and Function. , 1910, Nature.