Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery

A model for hydrogen evolution in an all-vanadium redox flow battery is developed, coupling the dynamic conservation equations for charge, mass and momentum with a detailed description of the electrochemical reactions. Bubble formation at the negative electrode is included in the model, taking into account the attendant reduction in the liquid volume and the transfer of momentum between the gas and liquid phases, using a modified multiphase-mixture approach. Numerical simulations are compared to experimental data for different vanadium concentrations and mean linear electrolyte flow rates, demonstrating good agreement. Comparisons to simulations with negligible hydrogen evolution demonstrate the effect of gas evolution on the efficiency of the battery. The effects of reactant concentration, flow rate, applied current density and gas bubble diameter on hydrogen evolution are investigated. Significant variations in the gas volume fraction and the bubble velocity are predicted, depending on the operating conditions.

[1]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[2]  Tomoo Yamamura,et al.  Electron-Transfer Kinetics of Np3 + ∕ Np4 + , NpO2 + ∕ NpO2 2 + , V2 + ∕ V3 + , and VO2 + ∕ VO2 + at Carbon Electrodes , 2005 .

[3]  R. Wedin,et al.  On the transport of small bubbles under developing channel flow in a buoyant gas-evolving electrochemical cell , 2001 .

[4]  Frank C. Walsh,et al.  A dynamic performance model for redox-flow batteries involving soluble species , 2008 .

[5]  M. M. Saleh Simulation of oxygen evolution reaction at porous anode from flowing electrolytes , 2007 .

[6]  P. Boissonneau,et al.  An experimental investigation of bubble-induced free convection in a small electrochemical cell , 2000 .

[7]  H. Vogt,et al.  On the supersaturation of gas in the concentration boundary layer of gas evolving electrodes , 1980 .

[8]  G. Ahmadi,et al.  A thermodynamical formulation for dispersed multiphase turbulent flows—1 , 1990 .

[9]  Edward P.L. Roberts,et al.  Numerical modelling of a bromide-polysulphide redox flow battery. Part 1: Modelling approach and validation for a pilot scale system , 2009 .

[10]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[11]  Mahmut D. Mat,et al.  A two-phase flow model for hydrogen evolution in an electrochemical cell , 2004 .

[12]  M. El-Deab,et al.  Electrocatalytic Activity of Metal-Loaded Reticulated Vitreous Carbon Electrodes for Hydrogen Evolution from Flowing Alkaline Solutions , 2006 .

[13]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[14]  Anders Dahlkild,et al.  Modelling the two-phase flow and current distribution along a vertical gas-evolving electrode , 2001, Journal of Fluid Mechanics.

[15]  Chaoyang Wang,et al.  Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells I. Model Development , 1998 .

[16]  Takashi Hikihara,et al.  A Coupled Dynamical Model of Redox Flow Battery Based on Chemical Reaction, Fluid Flow, and Electrical Circuit , 2008, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[17]  Maria Skyllas-Kazacos,et al.  Efficient Vanadium Redox Flow Cell , 1987 .

[18]  Akeel A. Shah,et al.  A model for hydrogen sulfide poisoning in proton exchange membrane fuel cells , 2008 .

[19]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[20]  Mark W. Verbrugge,et al.  Ion and Solvent Transport in Ion‐Exchange Membranes I . A Macrohomogeneous Mathematical Model , 1990 .

[21]  G. Marrucci,et al.  Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes , 1967 .

[22]  M. Bartolozzi,et al.  Mass-transfer study of the carbon felt electrode , 1991 .

[23]  Akeel A. Shah,et al.  A transient PEMFC model with CO poisoning and mitigation by O2 bleeding and Ru-containing catalyst , 2007 .

[24]  T. Noda,et al.  Hydrodynamic Studies of Bubble Effects on the IR‐Drops in a Vertical Rectangular Cell , 1975 .

[25]  Maria Skyllas-Kazacos,et al.  A study of the V(II)/V(III) redox couple for redox flow cell applications , 1985 .

[26]  K. Aldas,et al.  Application of a two-phase 'ow model for natural convection in an electrochemical cell , 2005 .

[27]  M. Gattrell,et al.  Study of the Mechanism of the Vanadium 4+/5+ Redox Reaction in Acidic Solutions , 2004 .

[28]  S. Palmas,et al.  Behaviour of a carbon felt flow by electrodes Part I: Mass transfer characteristics , 1991 .

[29]  V. Montiel,et al.  Characterization of a carbon felt electrode: structural and physical properties , 1999 .

[30]  J. Weidner,et al.  Diffusion of water in Nafion 115 membranes , 2000 .

[31]  D. Drew Mathematical Modeling of Two-Phase Flow , 1983 .

[32]  N. Zuber,et al.  Drag coefficient and relative velocity in bubbly, droplet or particulate flows , 1979 .

[33]  Akeel A. Shah,et al.  Modeling and Simulation of the Degradation of Perfluorinated Ion-Exchange Membranes in PEM Fuel Cells , 2009 .

[34]  Ch. Fabjan,et al.  The vanadium redox-battery: an efficient storage unit for photovoltaic systems , 2001 .

[35]  L. Janssen,et al.  Mass transfer at gas evolving electrodes , 1985 .

[36]  M. Verbrugge,et al.  Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte , 1991 .

[37]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[38]  M. Manninen,et al.  On the mixture model for multiphase flow , 1996 .

[39]  R. Mills,et al.  Self-diffusion in normal and heavy water in the range 1-45.deg. , 1973 .

[40]  J. Newman,et al.  Simulation of Recombinant Lead‐Acid Batteries , 1997 .

[41]  L. Janssen,et al.  The effect of electrolytically evolved gas bubbles on the thickness of the diffusion layer , 1970 .

[42]  J. Waber Mathematical Studies of Galvanic Corrosion VI. . Limiting Case of Very Thin Films , 1956 .

[43]  Ralph E. White,et al.  A Mathematical Model of a Lithium/Thionyl Chloride Primary Cell , 1989 .