Demographics of Transition Objects

The unusual properties of transition objects (young stars with an optically thin inner disc surrounded by an optically thick outer disc) suggest that significant disc evolution has occurred in these systems. We explore the nature of these systems by examining their demographics, specifically their stellar accretion rates ˙ M∗ and disc masses Mdisc compared to those of accreting T Tauri stars of comparable age. We find that the transition objects in Taurus occupy a restricted region of the ˙ M∗ versus Mdisc plane. Compared to non-transition single stars in Taurus, they have stellar accretion rates that are typically ∼10 times lower at the same disc mass and median disc masses approximately four times larger. These properties are anticipated by several proposed planet formation theories and suggest that the formation of Jovian mass planets may play a significant role in explaining the origin of at least some transition objects. Considering transition objects as a distinct demographic group among accreting T Tauri stars leads to a tighter relationship between disc masses and stellar accretion rates, with a slope between the two quantities that is close to the value of unity expected in simple theories of disc accretion.

[1]  On the Planet and the Disk of COKU TAURI/4 , 2004, astro-ph/0406445.

[2]  C. Clarke,et al.  Photoevaporation of protoplanetary discs - II. Evolutionary models and observable properties , 2006, astro-ph/0603254.

[3]  G. Fuller,et al.  The connection between submillimeter continuum flux and binary separation in young binaries: evidence of interaction between stars and disks , 1995, astro-ph/9508099.

[4]  E. Blackman,et al.  Planets Rapidly Create Holes in Young Circumstellar Disks , 2005, astro-ph/0510235.

[5]  C. Clarke,et al.  The dispersal of circumstellar discs: the role of the ultraviolet switch , 2001 .

[6]  Gennaro D'Angelo,et al.  Gas Flow across Gaps in Protoplanetary Disks , 2005, astro-ph/0512292.

[7]  Erick T. Young,et al.  Disk Evolution in Cep OB2: Results from the Spitzer Space Telescope , 2006 .

[8]  D. Lin,et al.  Attenuation of Millimeter Emission from Circumstellar Disks Induced by the Rapid Dust Accretion , 2004, astro-ph/0410095.

[9]  L. Hartmann,et al.  The Truncated Disk of CoKu Tau/4 , 2004, astro-ph/0411522.

[10]  S. Miyama,et al.  Magnetorotational Instability in Protoplanetary Disks. II. Ionization State and Unstable Regions , 2000, astro-ph/0005464.

[11]  L. Hartmann,et al.  Disks in Transition in the Taurus Population: Spitzer IRS Spectra of GM Aurigae and DM Tauri , 2005 .

[12]  A New Probe of the Planet-forming Region in T Tauri Disks , 2004, astro-ph/0409308.

[13]  Charles F. Gammie,et al.  Layered Accretion in T Tauri Disks , 1996 .

[14]  L. Hartmann,et al.  Disk Accretion Rates for T Tauri Stars , 1998 .

[15]  S. Zucker,et al.  The Smallest Mass Ratio Young Star Spectroscopic Binaries , 2001, astro-ph/0201324.

[16]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[17]  Accretion in protoplanetary disks : The imprint of core properties , 2006, astro-ph/0605336.

[18]  D. Padgett,et al.  The SPITZER c2d Survey of Weak-Line T Tauri Stars. I. Initial Results , 2006 .

[19]  L. Prato,et al.  Investigating Disk Evolution: A High Spatial Resolution Mid-Infrared Survey of T Tauri Stars , 2005, astro-ph/0509728.

[20]  Models of accreting gas giant protoplanets in protostellar disks , 2004, astro-ph/0412377.

[21]  L. Hartmann,et al.  Why Do T Tauri Disks Accrete? , 2006, astro-ph/0605294.

[22]  Francesco Palla,et al.  Star Formation in the Orion Nebula Cluster , 1999 .

[23]  L. Hartmann,et al.  Emission-Line Diagnostics of T Tauri Magnetospheric Accretion. II. Improved Model Tests and Insights into Accretion Physics , 2001 .

[24]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[25]  Richard P. Nelson,et al.  Tidally Induced Gap Formation in Protostellar Disks: Gap Clearing and Suppression of Protoplanetary Growth , 1999 .

[26]  A. Boss Evolution of the Solar Nebula. VII. Formation and Survival of Protoplanets Formed by Disk Instability , 2005 .

[27]  Thermohydrodynamics of Circumstellar Disks with High-Mass Planets , 2003, astro-ph/0309236.

[28]  L. Hartmann,et al.  Optical excess emission in T Tauri stars , 1991 .

[29]  L. Hartmann,et al.  The Mass Accretion Rates of Intermediate-Mass T Tauri Stars , 2004 .

[30]  G. Rieke,et al.  24 μm Detections of Circum(sub)stellar Disks in IC 348: Grain Growth and Inner Holes? , 2006 .

[31]  P. Hartigan,et al.  Disk Accretion and Mass Loss from Young Stars , 1995 .

[32]  Johns Hopkins University,et al.  Disk Accretion onto High-Mass Planets , 1999 .

[33]  Accretion Disks around Young Objects. II. Tests of Well-mixed Models with ISM Dust , 1999, astro-ph/9907330.

[34]  L. Hillenbrand,et al.  Accretion in Young Stellar/Substellar Objects , 2003, astro-ph/0304078.

[35]  Austin,et al.  Observational Constraints on the Formation and Evolution of Binary Stars , 2001, astro-ph/0103098.

[36]  K. Marsh,et al.  Evidence for unseen companions around T Tauri stars , 1992 .

[37]  L. Testi,et al.  Accretion in brown dwarfs: An infrared view , 2004 .

[38]  Michael F. Skrutskie,et al.  Circumstellar Material Associated with Solar-Type Pre-Main-Sequence Stars: A Possible Constraint on the Timescale for Planet Building , 1989 .

[39]  David Wilner,et al.  Evidence for a Developing Gap in a 10 Myr Old Protoplanetary Disk , 2002 .

[40]  S. Lubow,et al.  Three-dimensional calculations of high- and low-mass planets embedded in protoplanetary discs , 2003, astro-ph/0301154.

[41]  P. Armitage,et al.  Constraints on a planetary origin for the gap in the protoplanetary disc of GM Aurigae , 2003, astro-ph/0302204.

[42]  L. Hartmann,et al.  Accretion and the Evolution of T Tauri Disks , 1998 .

[43]  L. Hartmann,et al.  Cepheus OB2: Disk Evolution and Accretion at 3-10 Myr , 2005 .

[44]  Ithaca,et al.  A Survey and Analysis of Spitzer Infrared Spectrograph Spectra of T Tauri Stars in Taurus , 2006, astro-ph/0608038.

[45]  F. Walter,et al.  A Search for Protoplanetary Disks Around Naked T Tauri Stars , 1996 .

[46]  M. Skrutskie,et al.  A sensitive 10-micron search for emission arising from circumstellar dust associated with solar-type pre-main-sequence stars , 1990 .

[47]  Jack J. Lissauer,et al.  Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core , 2005 .

[48]  Lynne Hillenbrand,et al.  On the Evolutionary Status of Class I Stars and Herbig-Haro Energy Sources in Taurus-Auriga , 2004 .

[49]  Dust filtration at gap edges: Implications for the spectral energy distributions of discs with embedded planets , 2006, astro-ph/0609808.

[50]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[51]  Sao,et al.  Effects of Dust Growth and Settling in T Tauri Disks , 2005, astro-ph/0511564.

[52]  K. Strom,et al.  A study of the stellar population in the Chamaeleon dark clouds , 1992 .

[53]  W. Kley Mass flow and accretion through gaps in accretion discs , 1998, astro-ph/9809253.

[54]  K. Keil,et al.  Protostars and Planets V , 2007 .

[55]  Brazil.,et al.  Profiles of Strong Permitted Lines in Classical T Tauri Stars , 2000, astro-ph/0001322.

[56]  C. Dominik,et al.  Dust coagulation in protoplanetary disks: A rapid depletion of small grains , 2004, astro-ph/0412117.

[57]  G. Fazio,et al.  IRAC Observations of Taurus Pre-Main-Sequence Stars , 2005, astro-ph/0505323.

[58]  R. Durisen,et al.  A hybrid scenario for gas giant planet formation in rings , 2005 .