Blast overpressures from medium scale BLEVE tests

Abstract The measured blast overpressures from recent tests involving boiling liquid expanding vapour explosions (BLEVE) has been studied. The blast data came from tests where 0.4 and 2 m 3 ASME code propane tanks were exposed to torch and pool fires. In total almost 60 tanks were tested, and of these nearly 20 resulted in catastrophic failures and BLEVEs. Both single and two-step BLEVEs were observed in these tests. This paper presents an analysis of the blast overpressures created by these BLEVEs. In addition, the blast overpressures from a recent full scale fire test of a rail tank car is included in the analysis. The results suggest that the liquid energy content did not contribute to the shock overpressures in the near or far field. The liquid flashing and expansion does produce a local overpressure by dynamic pressure effects but it does not appear to produce a shock wave. The shock overpressures could be estimated from the vapour energy alone for all the tests considered. This was true for liquid temperatures at failure that were below, at and above the atmospheric superheat limit for propane. Data suggests that the two step type BLEVE produces the strongest overpressure. The authors give their ideas for this observation. The results shown here add some limited evidence to support previous researchers claims that the liquid flashing process is too slow to generate a shock. It suggests that liquid temperatures at or above the Tsl do not change this. The expansion of the flashing liquid contributes to other hazards such as projectiles, and close in dynamic pressure effects. Of course BLEVE releases in enclosed spaces such as tunnels or buildings have different hazards.