19 Multiscale signal processing techniques: A review

[1]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[2]  Deepen Sinha,et al.  On the optimal choice of a wavelet for signal representation , 1992, IEEE Trans. Inf. Theory.

[3]  G. Manley Central England temperatures: Monthly means 1659 to 1973 , 1974 .

[4]  I. Daubechies,et al.  Two-scale difference equations I: existence and global regularity of solutions , 1991 .

[5]  Robert Hummel,et al.  Reconstructions from zero crossings in scale space , 1989, IEEE Trans. Acoust. Speech Signal Process..

[6]  P. P. Vaidyanathan,et al.  Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks , 1988, IEEE Trans. Acoust. Speech Signal Process..

[7]  Gregory W. Wornell,et al.  A Karhunen-Loève-like expansion for 1/f processes via wavelets , 1990, IEEE Trans. Inf. Theory.

[8]  Ralph Otto Schmidt,et al.  A signal subspace approach to multiple emitter location and spectral estimation , 1981 .

[9]  A. Benveniste,et al.  Multiscale statistical signal processing , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[10]  H. Vincent Poor,et al.  Signal detection in fractional Gaussian noise , 1988, IEEE Trans. Inf. Theory.

[11]  A. Oppenheim,et al.  Reconstruction of two-dimensional signals from level crossings , 1990 .

[12]  J. Hosking Modeling persistence in hydrological time series using fractional differencing , 1984 .

[13]  A. Enis Çetin,et al.  Signal recovery from wavelet transform maxima , 1994, IEEE Trans. Signal Process..

[14]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[15]  Martin Vetterli,et al.  Wavelets and filter banks: theory and design , 1992, IEEE Trans. Signal Process..

[16]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[17]  Stuart A. Golden,et al.  Identifying multiscale statistical models using the wavelet transform , 1991 .

[18]  K. Shanmugan,et al.  Random Signals: Detection, Estimation and Data Analysis , 1988 .

[19]  Ahmed H. Tewfik,et al.  Parametrization of compactly supported orthonormal wavelets , 1993, IEEE Trans. Signal Process..

[20]  A. Tewfik,et al.  Fast multiscale statistical signal processing algorithms , 1991, [1991] Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers.

[21]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[22]  M. Barnsley Fractal modelling of real world images , 1988 .

[23]  Mohamed A. Deriche,et al.  Maximum likelihood estimation of the parameters of discrete fractionally differenced Gaussian noise process , 1993, IEEE Trans. Signal Process..

[24]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[25]  Jelena Kovacevic,et al.  Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn , 1992, IEEE Trans. Inf. Theory.

[26]  P. P. Vaidyanathan,et al.  Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial , 1990, Proc. IEEE.

[27]  Philip E. Gill,et al.  Practical optimization , 1981 .

[28]  A.H. Tewfik,et al.  Correlation structure of the discrete wavelet coefficients of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[29]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[30]  A. Calderón Intermediate spaces and interpolation, the complex method , 1964 .

[31]  Gene H. Golub,et al.  Matrix computations , 1983 .

[32]  I. Daubechies,et al.  Non-separable bidimensional wavelets bases. , 1993 .

[33]  B. Logan Information in the zero crossings of bandpass signals , 1977, The Bell System Technical Journal.

[34]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[35]  Mohamed A. Deriche,et al.  Signal modeling with filtered discrete fractional noise processes , 1993, IEEE Trans. Signal Process..

[36]  Wolfgang Dahmen,et al.  Stationary Subdivision, Fractals and Wavelets , 1990 .

[37]  Bernard C. Levy,et al.  State-space representations of 2-D FIR lossless matrices and their application to the design of 2-D subband coders , 1991, [1991] Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers.

[38]  Martin Vetterli Wavelets and filter banks for discrete-time signal processing , 1992 .

[39]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[40]  A. I. McLeod,et al.  Preservation of the rescaled adjusted range: 1. A reassessment of the Hurst Phenomenon , 1978 .

[41]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[42]  Stéphane Mallat,et al.  Zero-crossings of a wavelet transform , 1991, IEEE Trans. Inf. Theory.

[43]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[44]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[45]  D. Pollen,et al.  _{}(2,[,1/]) for a subfield of , 1990 .

[46]  Arthur Jay Barabell,et al.  Improving the resolution performance of eigenstructure-based direction-finding algorithms , 1983, ICASSP.

[47]  W. Burdic Underwater Acoustic System Analysis , 1984 .