Optimized pulses for the control of uncertain qubits.

Constructing high-fidelity control fields that are robust to control, system, and/or surrounding environment uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener model for illustrative simulations of a controlled qubit, we generate optimal controls for \pi/2- and \pi-pulses, and investigate their inherent robustness to uncertainty in the magnitude of the drift Hamiltonian. Next, we construct a quantum-control protocol to improve system-drift robustness by combining environment-decoupling pulse criteria and optimal control theory for unitary operations. By perturbatively expanding the unitary time-evolution operator for an open quantum system, previous analysis of environment-decoupling control pulses has calculated explicit control-field criteria to suppress environment-induced errors up to (but not including) third order from \pi/2- and \pi-pulses. We systematically integrate this criteria with optimal control theory, incorporating an estimate of the uncertain parameter, to produce improvements in gate fidelity and robustness, demonstrated via a numerical example based on double quantum dot qubits. For the qubit model used in this work, post facto analysis of the resulting controls suggests that realistic control-field fluctuations and noise may contribute just as significantly to gate errors as system and environment fluctuations.

[1]  David G Cory,et al.  Application of optimal control to CPMG refocusing pulse design. , 2010, Journal of magnetic resonance.

[2]  R. Young,et al.  Implications of Simultaneous Requirements for Low Noise Exchange Gates in Double Quantum Dots , 2009, 0909.0047.

[3]  Daniel A. Lidar,et al.  Empirical determination of dynamical decoupling operations , 2003 .

[4]  Fabio Benatti,et al.  Irreversible Quantum Dynamics , 2010 .

[5]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[6]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[7]  H. Rabitz,et al.  Exploring families of quantum controls for generating unitary transformations , 2008 .

[8]  G. Uhrig,et al.  Optimization of short coherent control pulses , 2007, 0709.0588.

[9]  J. A. Jones,et al.  Tackling systematic errors in quantum logic gates with composite rotations , 2003 .

[10]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[11]  M. Lukin,et al.  Relaxation, dephasing, and quantum control of electron spins in double quantum dots , 2006, cond-mat/0602470.

[12]  Constantin Brif,et al.  Environment-invariant measure of distance between evolutions of an open quantum system , 2009, 0909.0077.

[13]  Xiao-Jiang Feng,et al.  Why is chemical synthesis and property optimization easier than expected? , 2011, Physical chemistry chemical physics : PCCP.

[14]  G. Uhrig,et al.  Numerical analysis of optimized coherent control pulses , 2008, 0803.2411.

[15]  Justin Ruths,et al.  A multidimensional pseudospectral method for optimal control of quantum ensembles. , 2011, The Journal of chemical physics.

[16]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[17]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[18]  J. A. Jones,et al.  Use of composite rotations to correct systematic errors in NMR quantum computation , 1999, quant-ph/9911072.

[19]  Daniel A. Lidar,et al.  Quantum Computing in the Presence of Spontaneous Emission , 2003 .

[20]  Ramakrishna,et al.  Controllability of molecular systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  Kaveh Khodjasteh,et al.  Dynamical Quantum Error Correction of Unitary Operations with Bounded Controls , 2009, 0906.0525.

[22]  Kaveh Khodjasteh,et al.  Dynamically error-corrected gates for universal quantum computation. , 2008, Physical review letters.

[23]  Robert D. Carr,et al.  Implications of electronics constraints for solid-state quantum error correction and quantum circuit failure probability , 2011, 1105.0682.

[24]  R. Kosloff,et al.  Optimal control theory for unitary transformations , 2003, quant-ph/0309011.

[25]  J. Werschnik,et al.  Quantum optimal control theory , 2007, 0707.1883.

[26]  L. J. Sham,et al.  Theory of electron spin decoherence by interacting nuclear spins in a quantum dot , 2005, cond-mat/0508441.

[27]  Constantin Brif,et al.  Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles , 2007, quant-ph/0702147.

[28]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[29]  W. Marsden I and J , 2012 .

[30]  Daniel A. Lidar,et al.  Arbitrarily accurate dynamical control in open quantum systems. , 2009, Physical review letters.

[31]  S. Sarma,et al.  Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment , 2005, cond-mat/0512323.

[32]  Control of electron spin decoherence caused by electron–nuclear spin dynamics in a quantum dot , 2007, cond-mat/0703690.

[33]  G. Uhrig,et al.  Exact results on dynamical decoupling by π pulses in quantum information processes , 2008 .

[34]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[35]  H. Rabitz,et al.  Quantum control by means of hamiltonian structure manipulation. , 2011, Physical chemistry chemical physics : PCCP.

[36]  I. Petersen,et al.  Sliding mode control of quantum systems , 2009, 0911.0062.

[37]  A. Yacoby,et al.  Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization , 2009, 1009.5343.

[38]  Markus Wenin,et al.  Optimal Control for Open Quantum Systems: Qubits and Quantum Gates , 2009, 0910.0362.

[39]  A. Gossard,et al.  A Coherent Beam Splitter for Electronic Spin States , 2010, Science.

[40]  D. Lidar,et al.  Performance of Deterministic Dynamical Decoupling Schemes: Concatenated and Periodic Pulse Sequences , 2006, quant-ph/0607086.

[41]  H. Rabitz,et al.  The influence of laser field noise on controlled quantum dynamics. , 2004, The Journal of chemical physics.

[42]  G. Uhrig,et al.  High-order coherent control sequences of finite-width pulses , 2010, 1009.2638.

[43]  Herschel Rabitz,et al.  Landscape of unitary transformations in controlled quantum dynamics , 2009 .

[44]  Constantin Brif,et al.  Fidelity of optimally controlled quantum gates with randomly coupled multiparticle environments , 2007, 0712.2935.

[45]  A. Gossard,et al.  Dynamic nuclear polarization with single electron spins. , 2007, Physical review letters.

[46]  Herschel Rabitz,et al.  Observable-preserving control of quantum dynamics over a family of related systems , 2005 .

[47]  Herschel Rabitz,et al.  Search complexity and resource scaling for the quantum optimal control of unitary transformations , 2010, 1006.1829.

[48]  Jonathan A. Jones Quantum computing with NMR. , 2010, Progress in nuclear magnetic resonance spectroscopy.

[49]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[50]  Optimized dynamical decoupling for time-dependent Hamiltonians , 2009, 0910.0417.

[51]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[52]  Jonathan A. Jones,et al.  Arbitrary precision composite pulses for NMR quantum computing. , 2007, Journal of magnetic resonance.

[53]  R. D. Sousa,et al.  Dangling-bond spin relaxation and magnetic 1/f noise from the amorphous-semiconductor/oxide interface: Theory , 2007, 0705.4088.

[54]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[55]  D. Lidar,et al.  Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.

[56]  A. Rothman,et al.  Exploring the level sets of quantum control landscapes (9 pages) , 2006 .

[57]  Daniel A Lidar,et al.  Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing. , 2002, Physical review letters.

[58]  H. Rabitz,et al.  Photonic reagent control of dynamically homologous quantum systems. , 2007, The Journal of chemical physics.

[59]  John Preskill,et al.  Combining dynamical decoupling with fault-tolerant quantum computation , 2009, 0911.3202.

[60]  G. Uhrig,et al.  Generalization of short coherent control pulses: extension to arbitrary rotations , 2008, 0805.4726.

[61]  Andrea Morello,et al.  Electron spin decoherence in isotope-enriched silicon. , 2010, Physical review letters.

[62]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[63]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[64]  Jacob M. Taylor,et al.  Triplet–singlet spin relaxation via nuclei in a double quantum dot , 2005, Nature.

[65]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[66]  N. Khaneja,et al.  Control of inhomogeneous quantum ensembles , 2006 .

[67]  H. Rabitz,et al.  Quantum observable homotopy tracking control. , 2005, The Journal of chemical physics.

[68]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[69]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[70]  S. Pasini,et al.  Optimized pulses for the perturbative decoupling of a spin and a decoherence bath , 2009 .

[71]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.