Advances in Component-Based Face Detection

We describe the design of a component based face detector for gray scale images. We show that including pans of the face into the negative training sets of the component classifiers leads to improved system performance. We also introduce a method of using pairwise position statistics between component locations to more accurately locate the parts of a face. Finally, we illustrate an application of this technology in the creation of an accurate eye detection system.

[1]  Shimon Ullman,et al.  Object Classification Using a Fragment-Based Representation , 2000, Biologically Motivated Computer Vision.

[2]  Tomaso A. Poggio,et al.  Statistical Learning Theory: A Primer , 2000, International Journal of Computer Vision.

[3]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[4]  J. M. Gilbert,et al.  A real-time face recognition system using custom VLSI hardware , 1993, 1993 Computer Architectures for Machine Perception.

[5]  Thomas Vetter,et al.  A morphable model for the synthesis of 3D faces , 1999, SIGGRAPH.

[6]  Kah Kay Sung,et al.  Learning and example selection for object and pattern detection , 1995 .

[7]  Thomas Vetter,et al.  Synthesis of Novel Views from a Single Face Image , 1998, International Journal of Computer Vision.

[8]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[9]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[10]  R. Vaillant,et al.  Original approach for the localisation of objects in images , 1994 .

[11]  Paul A. Viola Complex Feature Recognition: A Bayesian Approach for Learning to Recognize Objects , 1996 .

[12]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[13]  Tomaso A. Poggio,et al.  Finding Human Faces with a Gaussian Mixture Distribution-Based Face Model , 1995, ACCV.

[14]  Dan Roth,et al.  Learning a Sparse Representation for Object Detection , 2002, ECCV.

[15]  Takeo Kanade,et al.  A statistical method for 3D object detection applied to faces and cars , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[16]  Massimiliano Pontil,et al.  Face Detection in Still Gray Images , 2000 .

[17]  Thomas Serre,et al.  Categorization by Learning and Combining Object Parts , 2001, NIPS.

[18]  Takeo Kanade,et al.  Probabilistic modeling of local appearance and spatial relationships for object recognition , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[19]  Federico Girosi,et al.  Support Vector Machines: Training and Applications , 1997 .

[20]  Narendra Ahuja,et al.  A SNoW-Based Face Detector , 1999, NIPS.

[21]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[22]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Michael C. Burl,et al.  Finding faces in cluttered scenes using random labeled graph matching , 1995, Proceedings of IEEE International Conference on Computer Vision.

[24]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[25]  Thomas Serre,et al.  Component-based face detection , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[26]  Tomaso Poggio,et al.  Incorporating prior information in machine learning by creating virtual examples , 1998, Proc. IEEE.

[27]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[28]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..