DNase II activated by the mitochondrial apoptotic pathway regulates RIP1-dependent non-apoptotic hepatocyte death via the TLR9/IFN-β signaling pathway

[1]  K. Wada,et al.  Lysosomal membrane protein SIDT2 mediates the direct uptake of DNA by lysosomes , 2016, Autophagy.

[2]  H. Eguchi,et al.  Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice , 2016, Hepatology.

[3]  R. Coffman,et al.  Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. , 2016, The Journal of clinical investigation.

[4]  H. Cortez‐Pinto,et al.  Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. , 2015, Clinical science.

[5]  Karen Blyth,et al.  Limited Mitochondrial Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell Death , 2015, Molecular cell.

[6]  T. Taniguchi,et al.  Apoptotic Caspases Prevent the Induction of Type I Interferons by Mitochondrial DNA , 2014, Cell.

[7]  Matthew E. Ritchie,et al.  Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production , 2014, Cell.

[8]  Neil Kaplowitz,et al.  Cell death and cell death responses in liver disease: mechanisms and clinical relevance. , 2014, Gastroenterology.

[9]  T. Luedde,et al.  A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis , 2014, EMBO molecular medicine.

[10]  Zhijian J. Chen,et al.  The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. , 2014, Molecular cell.

[11]  Mitchell R. McGill,et al.  Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen‐induced hepatocyte necrosis in mice , 2013, Hepatology.

[12]  Rohit Loomba,et al.  The global NAFLD epidemic , 2013, Nature Reviews Gastroenterology &Hepatology.

[13]  P. Kubes,et al.  Sterile inflammation in the liver. , 2012, Gastroenterology.

[14]  N. Hayashi,et al.  Bak deficiency inhibits liver carcinogenesis: a causal link between apoptosis and carcinogenesis. , 2012, Journal of hepatology.

[15]  S. Akira,et al.  Mitochondrial DNA That Escapes from Autophagy Causes Inflammation and Heart Failure , 2012, Nature.

[16]  R A Knight,et al.  Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012 , 2011, Cell Death and Differentiation.

[17]  B. Lang,et al.  Mitochondrial Evolution , 1999 .

[18]  K. Ikejima,et al.  Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. , 2011, Biochemical and biophysical research communications.

[19]  Wei Li,et al.  Increases in p53 expression induce CTGF synthesis by mouse and human hepatocytes and result in liver fibrosis in mice. , 2011, The Journal of clinical investigation.

[20]  Sarah E. Ewald,et al.  Nucleic acid recognition by the innate immune system. , 2011, Annual review of immunology.

[21]  S. Ryter,et al.  Autophagy proteins regulate innate immune response by inhibiting NALP3 inflammasome-mediated mitochondrial DNA release , 2010, Nature Immunology.

[22]  Grace Y Chen,et al.  Sterile inflammation: sensing and reacting to damage , 2010, Nature Reviews Immunology.

[23]  D. Green,et al.  Mitochondria and cell death: outer membrane permeabilization and beyond , 2010, Nature Reviews Molecular Cell Biology.

[24]  G. Gores,et al.  Hepatocyte death: a clear and present danger. , 2010, Physiological reviews.

[25]  L. Hennighausen,et al.  BH3‐only protein bid participates in the Bcl‐2 network in healthy liver cells , 2009, Hepatology.

[26]  L. Hennighausen,et al.  Mcl‐1 and Bcl‐xL cooperatively maintain integrity of hepatocytes in developing and adult murine liver , 2009, Hepatology.

[27]  Marcus Schuchmann,et al.  Knockout of myeloid cell leukemia‐1 induces liver damage and increases apoptosis susceptibility of murine hepatocytes , 2009, Hepatology.

[28]  K. Hashiguchi,et al.  Establishment of human cell lines lacking mitochondrial DNA. , 2009, Methods in molecular biology.

[29]  G. Gores,et al.  Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. , 2008, Seminars in liver disease.

[30]  D. Brenner,et al.  Toll‐like receptors and adaptor molecules in liver disease: Update , 2008, Hepatology.

[31]  S. Akira,et al.  Toll-like Receptors and Type I Interferons* , 2007, Journal of Biological Chemistry.

[32]  H. Yoshikawa,et al.  Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages , 2006, Nature.

[33]  Joanna Poulton,et al.  Detection of mitochondrial DNA depletion in living human cells using PicoGreen staining. , 2005, Experimental cell research.

[34]  Toshiharu Horie,et al.  Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. , 2005, Journal of hepatology.

[35]  H. Jaeschke,et al.  Mitochondrial permeability transition in acetaminophen‐induced necrosis and apoptosis of cultured mouse hepatocytes , 2004, Hepatology.

[36]  Takahiro Suzuki,et al.  Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses. , 2004, Gastroenterology.

[37]  C. J. Evans,et al.  DNase II: genes, enzymes and function. , 2003, Gene.

[38]  G. Gores,et al.  Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. , 2003, Gastroenterology.

[39]  Elisabeth L. Humphris,et al.  Role of Toll-Like Receptors in Changes in Gene Expression and NF-κB Activation in Mouse Hepatocytes Stimulated with Lipopolysaccharide , 2002, Infection and Immunity.

[40]  P. Matzinger The Danger Model: A Renewed Sense of Self , 2002, Science.

[41]  J. Dixon,et al.  Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese. , 2001, Gastroenterology.

[42]  C. García-Monzón,et al.  Characterization of pathogenic and prognostic factors of nonalcoholic steatohepatitis associated with obesity. , 2000, Journal of hepatology.

[43]  B. Lang,et al.  Mitochondrial evolution. , 1999, Science.

[44]  B F Lang,et al.  Mitochondrial evolution. , 1999, Science.

[45]  T. Koizumi Deoxyribonuclease II (DNase II) activity in mouse tissues and body fluids. , 1995, Experimental animals.

[46]  T. Yasuda,et al.  Human urine deoxyribonuclease II (DNase II) isoenzymes: a novel immunoaffinity purification, biochemical multiplicity, genetic heterogeneity and broad distribution among tissues and body fluids. , 1992, Biochimica et biophysica acta.