Wavelet Frames and Image Restorations

One of the major driven forces in the area of applied and computational harmonic analysis over the last decade or longer is the development of redundant systems that have sparse approximations of various classes of functions. Such redundant systems include framelet (tight wavelet frame), ridgelet, curvelet, shearlet and so on. This paper mainly focuses on a special class of such redundant systems: tight wavelet frames, especially, those tight wavelet frames generated via a multiresolution analysis. In particular, we will survey the development of the unitary extension principle and its generalizations. A few examples of tight wavelet frame systems generated by the unitary extension principle are given. The unitary extension principle makes constructions of tight wavelet frame systems straightforward and painless which, in turn, makes a wide usage of the tight wavelet frames possible. Applications of wavelet frame, especially frame based image restorations, are also discussed in details.

[1]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[2]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[3]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[4]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[5]  S. Dubuc Interpolation through an iterative scheme , 1986 .

[6]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[7]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[8]  W. Lawton Tight frames of compactly supported affine wavelets , 1990 .

[9]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[10]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[11]  R. DeVore,et al.  On the construction of multivariate (pre)wavelets , 1993 .

[12]  Y. Meyer Wavelets and Operators , 1993 .

[13]  A. Ron,et al.  Weyl-Heisenberg Frames and Riesz Bases in L2(Rd). , 1994 .

[14]  Zuowei Shen,et al.  Multiresolution and wavelets , 1994, Proceedings of the Edinburgh Mathematical Society.

[15]  A. Ron,et al.  Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.

[16]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[17]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[18]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[19]  Gustaf Gripenberg,et al.  A necessary and sufficient condition for the existence of a father wavelet , 1995 .

[20]  G. Weiss,et al.  A First Course on Wavelets , 1996 .

[21]  A. Ron,et al.  Affine systems inL2 (ℝd) II: Dual systems , 1997 .

[22]  A. Ron,et al.  Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .

[23]  G. Weiss,et al.  A characterization of functions that generate wavelet and related expansion , 1997 .

[24]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[25]  J. Benedetto,et al.  The Theory of Multiresolution Analysis Frames and Applications to Filter Banks , 1998 .

[26]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[27]  S. Mallat A wavelet tour of signal processing , 1998 .

[28]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[29]  C. Chui,et al.  Compactly supported tight frames associated with refinable functions , 2000 .

[30]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[31]  David L. Donoho,et al.  Ridge Functions and Orthonormal Ridgelets , 2001, J. Approx. Theory.

[32]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[33]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[34]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[35]  Raymond H. Chan,et al.  Wavelet Algorithms for High-Resolution Image Reconstruction , 2002, SIAM J. Sci. Comput..

[36]  R. Gribonval,et al.  Bi-framelet systems with few vanishing moments characterize Besov spaces , 2004 .

[37]  R. Chan,et al.  Tight frame: an efficient way for high-resolution image reconstruction , 2004 .

[38]  B. Han,et al.  Pairs of Dual Wavelet Frames from Any Two Refinable Functions , 2004 .

[39]  R. Gribonval,et al.  Tight wavelet frames in Lebesgue and Sobolev spaces , 2004 .

[40]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[41]  R. Gribonval,et al.  On Approximation with Spline Generated Framelets , 2004 .

[42]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[43]  A. Ron,et al.  CAPlets : wavelet representations without wavelets , 2005 .

[44]  Robert D. Nowak,et al.  A bound optimization approach to wavelet-based image deconvolution , 2005, IEEE International Conference on Image Processing 2005.

[45]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[46]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[47]  R. Chan,et al.  A Framelet-Based Approach for Image Inpainting , 2005 .

[48]  T. Chan,et al.  Variational image inpainting , 2005 .

[49]  A. Ron,et al.  Generalized Shift-Invariant Systems , 2005 .

[50]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[51]  Jean-Luc Starck,et al.  Sparse representations and bayesian image inpainting , 2005 .

[52]  D. Labate,et al.  Resolution of the wavefront set using continuous shearlets , 2006, math/0605375.

[53]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[54]  Bin Han,et al.  Wavelets with Short Support , 2006, SIAM J. Math. Anal..

[55]  R. Chan,et al.  A framelet algorithm for enhancing video stills , 2007 .

[56]  I. Daubechies,et al.  Iteratively solving linear inverse problems under general convex constraints , 2007 .

[57]  Zuowei Shen,et al.  PSEUDO-SPLINES, WAVELETS AND FRAMELETS , 2007 .

[58]  Zuowei Shen,et al.  Deconvolution: a wavelet frame approach , 2007, Numerische Mathematik.

[59]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[60]  Jian-Feng Cai,et al.  A framelet-based image inpainting algorithm , 2008 .

[61]  Raymond H. Chan,et al.  Restoration of Chopped and Nodded Images by Framelets , 2008, SIAM J. Sci. Comput..

[62]  Bin Han,et al.  Compactly Supported Symmetric C∞ Wavelets with Spectral Approximation Order , 2008, SIAM J. Math. Anal..

[63]  Mohamed-Jalal Fadili,et al.  Inpainting and Zooming Using Sparse Representations , 2009, Comput. J..

[64]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[65]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[66]  Zuowei Shen,et al.  Dual Wavelet Frames and Riesz Bases in Sobolev Spaces , 2009 .

[67]  Jian-Feng Cai,et al.  High-quality curvelet-based motion deblurring from an image pair , 2009, CVPR.

[68]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[69]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[70]  Jian-Feng Cai,et al.  Convergence of the linearized Bregman iteration for ℓ1-norm minimization , 2009, Math. Comput..

[71]  Jian-Feng Cai,et al.  High-quality curvelet-based motion deblurring from an image pair , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[72]  Jian-Feng Cai,et al.  Blind motion deblurring from a single image using sparse approximation , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[73]  Raymond H. Chan,et al.  Convergence analysis of tight framelet approach for missing data recovery , 2009, Adv. Comput. Math..

[74]  Jian-Feng Cai,et al.  Linearized Bregman iterations for compressed sensing , 2009, Math. Comput..

[75]  Jian-Feng Cai,et al.  Blind motion deblurring using multiple images , 2009, J. Comput. Phys..

[76]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[77]  Jian-Feng Cai,et al.  Linearized Bregman Iterations for Frame-Based Image Deblurring , 2009, SIAM J. Imaging Sci..

[78]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[79]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[80]  Jian-Feng Cai,et al.  Framelet based deconvolution , 2010 .

[81]  Jian-Feng Cai,et al.  Simultaneous cartoon and texture inpainting , 2010 .

[82]  Kim-Chuan Toh,et al.  An Accelerated Proximal Gradient Algorithm for Frame-Based Image Restoration via the Balanced Approach , 2011, SIAM J. Imaging Sci..

[83]  Bin Dong,et al.  Fast Linearized Bregman Iteration for Compressive Sensing and Sparse Denoising , 2011, ArXiv.

[84]  Jian-Feng Cai,et al.  Framelet-Based Blind Motion Deblurring From a Single Image , 2012, IEEE Transactions on Image Processing.