Codegree Conditions for Tiling Complete k-Partite k-Graphs and Loose Cycles

Given two $k$-graphs ($k$-uniform hypergraphs) $F$ and $H$, a perfect $F$-tiling (or an $F$-factor) in $H$ is a set of vertex disjoint copies of $F$ that together cover the vertex set of $H$. For all complete $k$-partite $k$-graphs $K$, Mycroft proved a minimum codegree condition that guarantees a $K$-factor in an $n$-vertex $k$-graph, which is tight up to an error term $o(n)$. In this paper we improve the error term in Mycroft's result to a sub-linear term that relates to the Turan number of $K$ when the differences of the sizes of the vertex classes of $K$ are co-prime. Furthermore, we find a construction which shows that our improved codegree condition is asymptotically tight in infinitely many cases thus disproving a conjecture of Mycroft. At last, we determine exact minimum codegree conditions for tiling $K^{(k)}(1, \dots, 1, 2)$ and tiling loose cycles thus generalizing results of Czygrinow, DeBiasio, and Nagle, and of Czygrinow, respectively.

[1]  P. Erdös On extremal problems of graphs and generalized graphs , 1964 .

[2]  Hiêp Hàn,et al.  Dirac-type results for loose Hamilton cycles in uniform hypergraphs , 2010, J. Comb. Theory, Ser. B.

[3]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[4]  Vojtech Rödl,et al.  Dirac-Type Questions For Hypergraphs — A Survey (Or More Problems For Endre To Solve) , 2010 .

[5]  Peter Keevash,et al.  A hypergraph blow‐up lemma , 2010, Random Struct. Algorithms.

[6]  Yehoshua Vitek Bounds for a Linear Diophantine Problem of Frobenius , 1975 .

[7]  Jie Han,et al.  Decision problem for Perfect Matchings in Dense k-uniform Hypergraphs , 2014, 1409.5931.

[8]  P. Lax Proof of a conjecture of P. Erdös on the derivative of a polynomial , 1944 .

[9]  Zoltán Füredi,et al.  Forbidding Just One Intersection , 1985, J. Comb. Theory, Ser. A.

[10]  Noga Alon,et al.  AlmostH-factors in dense graphs , 1992, Graphs Comb..

[11]  Daniela Kühn,et al.  Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree , 2006, J. Comb. Theory, Ser. B.

[12]  Klas Markström,et al.  $$F$$F-Factors in Hypergraphs Via Absorption , 2011, Graphs Comb..

[13]  Richard Mycroft,et al.  Packing k-partite k-uniform hypergraphs , 2011, Electron. Notes Discret. Math..

[14]  Yi Zhao,et al.  Minimum Vertex Degree Threshold for C43 ‐tiling* , 2013, J. Graph Theory.

[15]  Henryk Iwaniec,et al.  Bombieri's theorem in short intervals , 1975 .

[16]  Zoltán Füredi,et al.  Hypergraph Turán numbers of linear cycles , 2014, J. Comb. Theory, Ser. A.

[17]  Linyuan Lu,et al.  Using Lovász Local Lemma in the Space of Random Injections , 2007, Electron. J. Comb..

[18]  Wei Gao,et al.  Minimum Codegree Threshold for C 6 3-Factors in 3-Uniform Hypergraphs , 2015, Combinatorics, Probability and Computing.

[19]  Vojtech Rödl,et al.  A Dirac-Type Theorem for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[20]  R. Graham,et al.  On a linear diophantine problem of Frobenius , 1972 .

[21]  János Komlós,et al.  Proof of the Alon-Yuster conjecture , 2001, Discret. Math..

[22]  Klas Markström,et al.  $F$-factors in hypergraphs via absorption , 2011 .

[23]  Brendan Nagle,et al.  Tiling 3‐Uniform Hypergraphs With K43−2e , 2011, J. Graph Theory.

[24]  Yi Zhao,et al.  Recent advances on Dirac-type problems for hypergraphs , 2015, 1508.06170.

[25]  Andrzej Czygrinow Tight Co-Degree Condition for Packing of Loose Cycles in 3-Graphs , 2016, J. Graph Theory.

[26]  Hiêp Hàn,et al.  Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs , 2011, Electron. Notes Discret. Math..

[27]  Peter Keevash,et al.  A Geometric Theory for Hypergraph Matching , 2011, 1108.1757.

[28]  Dhruv Mubayi,et al.  Some Exact Results and New Asymptotics for Hypergraph Turán Numbers , 2002, Combinatorics, Probability and Computing.

[29]  Peter Keevash The existence of designs , 2014, 1401.3665.

[30]  Alexandr V. Kostochka,et al.  Turán problems and shadows I: Paths and cycles , 2013, J. Comb. Theory, Ser. A.

[31]  Yi Zhao,et al.  Minimum vertex degree thresholds for tiling complete 3-partite 3-graphs , 2015, J. Comb. Theory, Ser. A.

[32]  D. Kuhn,et al.  Surveys in Combinatorics 2009: Embedding large subgraphs into dense graphs , 2009, 0901.3541.

[33]  Klas Markström,et al.  Minimum codegree threshold for -factors , 2013, J. Comb. Theory, Ser. A.

[34]  Yi Zhao,et al.  Exact Minimum Codegree Threshold for K − 4-Factors , 2015, Combinatorics, Probability and Computing.

[35]  Daniela Kühn,et al.  The minimum degree threshold for perfect graph packings , 2009, Comb..