Sequent Calculi for Normal Modal Proposisional Logics

In this paper a systematic sequent-style proof theory for the most important systems of normal modal prepositional logic based on classical prepositional logic CPL is presented After discussing philosophical, methodological, and computational aspects of the problem of Gentzenizing modal logic, a variant of Belnap's display logic is introduced. It is shown that within this proof theory the modal axiom schemes D, T, 4, 5, and B (and some others) can be captured by characteristic structural inference rules For all sequent systems under consideration (i) cut is admissible, (n) the subformula property holds, and (in) all connectives are uniquely characterized Also modal systems based on substructural subsystems of CPL are briefly dealt with KeywordsSequent calculi, modal logic, display logic, substructural logics. Gentzen 's proof-theoretical methods have not yet been properly applied to modal logic. Serebriannikov [27, p. 79]

[1]  Jeffery I. Zucker,et al.  The adequacy problem for inferential logic , 1978, J. Philos. Log..

[2]  Kazuo Matsumoto,et al.  Gentzen method in modal calculi. II , 1957 .

[3]  Silvio Valentini,et al.  The modal logic of provability. The sequential approach , 1982, Journal of Philosophical Logic.

[4]  Tijn Borghuis,et al.  Interpreting Modal Natural Deduction in Type Theory , 1993 .

[5]  Louis F. Goble,et al.  Gentzen systems for modal logic , 1974, Notre Dame J. Formal Log..

[6]  Tatsuya Shimura,et al.  Cut-Free Systems for the Modal Logic S4.3 and S4.3Grz , 1991, Reports Math. Log..

[7]  S. Blamey,et al.  A Perspective on Modal Sequent Logic , 1991 .

[8]  Heinrich Wansing,et al.  The Logic of Information Structures , 1993, Lecture Notes in Computer Science.

[9]  Arnon Avron,et al.  On modal systems having arithmetical interpretations , 1984, Journal of Symbolic Logic.

[10]  Masahiko Sato A Cut-Free Gentzen-Type System for the Modal Logic S5 , 1980, J. Symb. Log..

[11]  Claudio Cerrato,et al.  Modal Sequents for Normal Modal Logics , 1993, Math. Log. Q..

[12]  Richard Routley Review: Masao Ohnishi, Kazuo Matsumoto, Gentzen Method in Modal Calculi, II , 1975 .

[13]  G. F. Shvarts,et al.  Gentzen Style Systems for K45 and K45D , 1989, Logic at Botik.

[14]  Daniel Leivant,et al.  On the proof theory of the modal logic for arithmetic provability , 1981, Journal of Symbolic Logic.

[15]  Mario R. F. Benevides,et al.  A Constructive Presentation for the Modal Connective of Necessity (\Box) , 1992, J. Log. Comput..

[16]  Kosta Dosen,et al.  Logical Constants as Punctuation Marks , 1989, Notre Dame J. Formal Log..

[17]  Kosta Dosen,et al.  Sequent-systems and groupoid models. I , 1988, Stud Logica.

[18]  Kosta Dosen,et al.  Sequent-systems for modal logic , 1985, Journal of Symbolic Logic.

[19]  G. Mints,et al.  Cut-Free Calculi of the S5 Type , 1970 .

[20]  D. Gabbay A General Theory of Structured Consequence Relations , 1995 .

[21]  Grigori Mints,et al.  Gentzen-type systems and resolution rules. Part I. Propositional logic , 1990, Conference on Computer Logic.

[22]  Andrea Masini,et al.  2-Sequent Calculus: A Proof Theory of Modalities , 1992, Ann. Pure Appl. Log..

[23]  Nuel Belnap,et al.  Linear Logic Displayed , 1989, Notre Dame J. Formal Log..