暂无分享,去创建一个
Amir Hashemi | Joos Heintz | Luis M. Pardo | Pablo Solernó | J. Heintz | L. M. Pardo | P. Solernó | A. Hashemi
[1] Michael Francis Atiyah,et al. Introduction to commutative algebra , 1969 .
[2] Wolfgang Vogel,et al. Lectures on Results on Bezout’s Theorem , 1984 .
[3] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[4] Joos Heintz,et al. Testing polynomials which are easy to compute (Extended Abstract) , 1980, STOC '80.
[5] Johan P. Hansen,et al. INTERSECTION THEORY , 2011 .
[6] Craig Huneke,et al. Commutative Algebra I , 2012 .
[7] Joos Heintz,et al. Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..
[8] Jean-Benoît Bost,et al. UN ANALOGUE ARITHMETIQUE DU THEOREME DE BEZOUT , 1991 .
[9] I. Shafarevich. Basic algebraic geometry , 1974 .
[10] David Mumford,et al. What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.
[11] David Masser,et al. Fields of large transcendence degree generated by values of elliptic functions , 1983 .
[12] Alicia Dickenstein,et al. The membership problem for unmixed polynomial ideals is solvable in single exponential time , 1991, Discret. Appl. Math..
[13] Teresa Krick,et al. Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.
[14] Kuo-Tsai Chen,et al. On the Bezout Theorem , 1984 .
[15] David Masser,et al. Multiplicity estimates for analytic functions II , 1980 .
[16] Patrizia M. Gianni,et al. Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..
[17] W.D. BROWNAWELL,et al. Multiplicity estimates for analytic functions. I. , 1980 .
[18] Y. N. Lakshman. A Single Exponential Bound on the Complexity of Computing Gröbner Bases of Zero Dimensional Ideals , 1991 .