LOSC: A locality-optimized subgraph construction scheme for out-of-core graph processing

[1]  Fang Wang,et al.  GraphSD: A State and Dependency aware Out-of-Core Graph Processing System , 2022, ICPP.

[2]  Kiran Kumar Matam,et al.  MultiLogVC: Efficient Out-of-Core Graph Processing Framework for Flash Storage , 2021, 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[3]  Dan Feng,et al.  A Hybrid Update Strategy for I/O-Efficient Out-of-Core Graph Processing , 2020, IEEE Transactions on Parallel and Distributed Systems.

[4]  Hong Jiang,et al.  LOSC: Efficient Out-of-Core Graph Processing with Locality-optimized Subgraph Construction , 2019, 2019 IEEE/ACM 27th International Symposium on Quality of Service (IWQoS).

[5]  Hong Jiang,et al.  Using High-Bandwidth Networks Efficiently for Fast Graph Computation , 2019, IEEE Transactions on Parallel and Distributed Systems.

[6]  Wenguang Chen,et al.  ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds , 2018, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis.

[7]  Alex Brooks,et al.  Gluon: a communication-optimizing substrate for distributed heterogeneous graph analytics , 2018, PLDI.

[8]  Wook-Shin Han,et al.  TurboGraph++: A Scalable and Fast Graph Analytics System , 2018, SIGMOD Conference.

[9]  Guy E. Blelloch,et al.  Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable , 2018, SPAA.

[10]  Shoaib Kamil,et al.  GraphIt: a high-performance graph DSL , 2018, Proc. ACM Program. Lang..

[11]  Henry Hoffmann,et al.  GraphZ: Improving the Performance of Large-Scale Graph Analytics on Small-Scale Machines , 2018, 2018 IEEE 34th International Conference on Data Engineering (ICDE).

[12]  Guy E. Blelloch,et al.  Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing , 2017, SPAA.

[13]  Weimin Zheng,et al.  Squeezing out All the Value of Loaded Data: An Out-of-core Graph Processing System with Reduced Disk I/O , 2017, USENIX Annual Technical Conference.

[14]  Yafei Dai,et al.  Garaph: Efficient GPU-accelerated Graph Processing on a Single Machine with Balanced Replication , 2017, USENIX Annual Technical Conference.

[15]  Mohan Kumar,et al.  Mosaic: Processing a Trillion-Edge Graph on a Single Machine , 2017, EuroSys.

[16]  H. Howie Huang,et al.  Graphene: Fine-Grained IO Management for Graph Computing , 2017, FAST.

[17]  H. Howie Huang,et al.  G-Store: High-Performance Graph Store for Trillion-Edge Processing , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.

[18]  Wenguang Chen,et al.  Gemini: A Computation-Centric Distributed Graph Processing System , 2016, OSDI.

[19]  Rajiv Gupta,et al.  Load the Edges You Need: A Generic I/O Optimization for Disk-based Graph Processing , 2016, USENIX Annual Technical Conference.

[20]  Yu Wang,et al.  NXgraph: An efficient graph processing system on a single machine , 2015, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[21]  Willy Zwaenepoel,et al.  Chaos: scale-out graph processing from secondary storage , 2015, SOSP.

[22]  Avery Ching,et al.  One Trillion Edges: Graph Processing at Facebook-Scale , 2015, Proc. VLDB Endow..

[23]  Wenguang Chen,et al.  GridGraph: Large-Scale Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning , 2015, USENIX ATC.

[24]  Zhenguo Li,et al.  VENUS: Vertex-centric streamlined graph computation on a single PC , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[25]  Guy E. Blelloch,et al.  Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra+ , 2015, 2015 Data Compression Conference.

[26]  Haibo Chen,et al.  NUMA-aware graph-structured analytics , 2015, PPoPP.

[27]  Reynold Xin,et al.  GraphX: Graph Processing in a Distributed Dataflow Framework , 2014, OSDI.

[28]  Alexander S. Szalay,et al.  FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs , 2014, FAST.

[29]  Willy Zwaenepoel,et al.  X-Stream: edge-centric graph processing using streaming partitions , 2013, SOSP.

[30]  Shirish Tatikonda,et al.  From "Think Like a Vertex" to "Think Like a Graph" , 2013, Proc. VLDB Endow..

[31]  Jinha Kim,et al.  TurboGraph: a fast parallel graph engine handling billion-scale graphs in a single PC , 2013, KDD.

[32]  Hai Jin,et al.  TripleBit: a Fast and Compact System for Large Scale RDF Data , 2013, Proc. VLDB Endow..

[33]  Guy E. Blelloch,et al.  Ligra: a lightweight graph processing framework for shared memory , 2013, PPoPP '13.

[34]  Carlos Guestrin,et al.  Usenix Association 10th Usenix Symposium on Operating Systems Design and Implementation (osdi '12) 31 Graphchi: Large-scale Graph Computation on Just a Pc , 2022 .

[35]  Joseph M. Hellerstein,et al.  Distributed GraphLab: A Framework for Machine Learning in the Cloud , 2012, Proc. VLDB Endow..

[36]  Aart J. C. Bik,et al.  Pregel: a system for large-scale graph processing , 2010, SIGMOD Conference.

[37]  Sebastiano Vigna,et al.  The webgraph framework I: compression techniques , 2004, WWW '04.

[38]  Leslie G. Valiant,et al.  A bridging model for parallel computation , 1990, CACM.

[39]  Dan Feng,et al.  CIC-PIM: Trading spare computing power for memory space in graph processing , 2021, J. Parallel Distributed Comput..

[40]  Anand Sivasubramaniam,et al.  Large-Scale Graph Processing on Emerging Storage Devices , 2019, FAST.

[41]  Keval Vora,et al.  LUMOS: Dependency-Driven Disk-based Graph Processing , 2019, USENIX ATC.

[42]  Carlos Guestrin,et al.  PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs , 2012 .

[43]  Carlos Guestrin,et al.  Distributed GraphLab : A Framework for Machine Learning and Data Mining in the Cloud , 2012 .